BASH(1) BASH(1)

NAME
bash — GNU Bourne-Again SHell

SYNOPSIS
bash[options] [file]

COPYRIGHT
Bash is Copyright © 1989-2004 by the Free Software Foundation, Inc.

DESCRIPTION
Bashis ansh-compatible command language interpreter tixat@es commands read from the standard
input or from a file.Bashalso incorporates useful features from ltwen andC shells ksh andcsh).

Bash is intended to be a conformant implementation of the IEEE POSIX Shell and Tools specification
(IEEE Working Group 1003.2).

OPTIONS
In addition to the single-character shell options documented in the descriptionsef blgtin command,
bashinterprets the following options when it isvoked:

—c string If the —c option is present, then commands are read Bting. If there are arguments after
thestring, they are assigned to the positional parameters, starting®@ith

=i If the —i option is present, the shellirgeractive

- Makebashact as if it had beenvoked as a dgin shell (se&@NVOCATION below).

-r If the —r option is present, the shell becomestricted (SeeRESTRICTED SHELL below).

-s If the —s option is present, or if no arguments remain after option processing, then commands
are read from the standard inputhis option allows the positional parameters to be set when
invoking an interactie sell.

-D A list of all double-quoted strings preceded$ig printed on the standard ouput. These are
the strings that are subject to language translation when the current local€ isrrRDSIX.

This implies the-n option; no commands will bexecuted.

[-+]O [shopt_optioh
shopt_options one of the shell options accepted by shept builtin (see SHELL BUILTIN
COMMANDS belaw). If shopt_optionis present;-O sets the value of that optioh© unsets
it. If shopt_optioris not supplied, the names aralues of the shell options acceptedsbyppt
are printed on the standard output. If theooation option istO, the output is displayed in a
format that may be reused as input.

- A —- signals the end of options and disables further option proces&mgarguments after
the—- are treated as filenames anduanents. Arargument of- is equvaent to—-.

Bashalso interprets a number of multi-character optiohisese options must appear on the command line
before the single-character options to be recognized.

——debugger
Arrange for the debugger profile to beeeuted before the shell start$urns on extended dab-
ging mode (see the description of #addebugoption to theshopt builtin below) and shell func-
tion tracing (see the description of the functrace option to thesetbuiltin below).
——dump-po-strings
Equivaent to-D, but the output is in the GNgetextpo (portable object) file format.
——dump-strings
Equivaent to-D.
——help Display a usage message on standard output and exit successfully.
—=init-file file
——rcfile file
Execute commands fronfile instead of the standard personal initialization filbashrcif the
shell is interactie (SeeINVOCATION below).

——login
Equivalent to-I.

GNU Bash-3.0 2004 June 26 1

BASH(1) BASH(1)

——noediting
Do not use the GNleadline library to read command lines when the shell is interacti

——noprofile
Do not read either the system-wide startup f@te/profile or ary of the personal initialization files
“I.bash_profile™/.bash_login or “/.profile. By default,bashreads these files when it is/oked as
a login shell (seéNVOCATION below).

——norc Do not read andxecute the personal initialization filé.bashrcif the shell is interactie. This
option is on by default if the shell isvivked as sh.

——posix
Change the behavior bshwhere the default operation fdifs from the POSIX 1003.2 standard
to match the standar@dqsix modg

——restricted
The shell becomes restricted (f#STRICTED SHELL below).

——verbose
Equivaent to —v.

—=version
Show version information for this instance lbshon the standard output and exit successfully.

ARGUMENTS
If arguments remain after option processing, and neitheraher the—s option has been supplied, the first
argument is assumed to be the name of a file containing shell comniibdshis invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remginiments. Bash
reads and»acutes commands from this file, thexite. Bashs exit status is thexat status of the last com-
mand &ecuted in the script. If no commands axeaited, the it status is 0. An attempt is first made to
open the file in the current directpand, if no file is found, then the shell searches the directorieATiH
for the script.

INVOCATION
A login shellis one whose first character of argument zero-isae one started with the—login option.

An interactiveshell is one started without non-optiog@ments and without thec option whose standard
input and error are both connected to terminals (as determineshtiy3)), or one started with thei
option. PS1lis set ands- includesi if bashis interactve, dlowing a shell script or a startup file to test this
state.

The following paragraphs describeshbashexecutes its startup files. If grof the files exist but cannot be
read,bashreports an errorTildes are gpanded in file names as described WwaloderTilde Expansion
in theEXPANSION section.

Whenbashis invoked as anmteractve login shell, or as a non-interaati dell with the——login option, it
first reads andxecutes commands from the filetc/profilg if that file eists. Afterreading that file, it
looks for™/.bash_profile™/.bash_loginand~/.profile, in that orderand reads andxecutes commands from
the first one that exists and is readabl&e ——noprofile option may be used when the shell is started to
inhibit this behavior.

When a login shell exithashreads and»ecutes commands from the filebash_logoutif it exists.

When an interacte dhell that is not a login shell is startdoish reads and ecutes commands from
“I.bashrg if that file eists. Thismay be inhibited by using the-norc option. The--rcfile file option will
forcebashto read and»ecute commands frorifile instead of/.bashrc

When bash is started non-interaegly, to run a shell script, for>xample, it looks for the ariable
BASH_ENV in the environment, expands its value if it appears there, and usegptreled value as the
name of a file to read andeeute. Bashbehaes as if he following command werexecuted:

if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of théATH variable is not used to search for the file name.

GNU Bash-3.0 2004 June 26 2

BASH(1) BASH(1)

If bashis invoked with the namesh, it tries to mimic the startup behavior of historical versionstoés
closely as possible, while conforming to the POSIX standard as well. Wakedras anmteractve login
shell, or a non-interact hell with the—-login option, it first attempts to read angeeute commands
from /etc/profileand™/.profile, in that order The ——noprofile option may be used to inhibit this befa.
When irvoked as anmteractve sell with the namesh, bashlooks for the ariableENV, expands its alue
if it is defined, and uses the expanded value as the name of a file to readcatel eSincea shell invoked
assh does not attempt to read andeeute commands from grother startup files, the—rcfile option has
no efect. Anon-interactre ell invoked with the namesh does not attempt to readyaother startup files.
When irvoked as sh, bashentersposixmode after the startup files are read.

Whenbashis started inposixmode, as with the—posix command line option, it follows the POSIX stan-
dard for startup files. In this mode, interaetehells expand theNV variable and commands are read and
executed from the file whose name is the expanddaey Noother startup files are read.

Bash attempts to determine when it is being run by the remote shell daemon, ush@llyf bash deter-
mines it is being run byshd, it reads and»ecutes commands frofit.bashrg if that file exists and is read-
able. Itwill not do this if invoked as sh. The ——norc option may be used to inhibit this befa, and the
——rcfile option may be used to force another file to be reatlishd does not generally woke the shell
with those options or althem to be specified.

If the shell is started with thefettive wser (group) id not equal to the real user (group) id, and-phe

option is not supplied, no startup files are read, shell functions are not inherited from the environment, the
SHELLOPTS variable, if it appears in the environment, is ignored, and tieetefe wser id is set to the real

user id. If the-p option is supplied at irocation, the startup behavior is the same, but tleetéfe wser id

iS not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also knotohkes a
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-
betic character or an underscore. Also referred to adeatifier.
metacharacter
A character that, when unquoted, separat@sisy Oneof the following:
| & ; () < > space tab
control operator
A tokenthat performs a control function. It is one of the following symbols:
M & && ; ;; () | < newline>

RESERVED WORDS
Reserved wals are words that he a pecial meaning to the shellhe following words are recognized as
resened when unquoted and either the first word of a simple commang8Hgteé GRAMMAR below) or
the third word of aaseor for command:

I case do done elif else esac fi for function if in select then until
while { } time [[1]

SHELL GRAMMAR
Simple Commands
A simple comman@ a sequence of optionadnable assignments followed bjank-separated words and
redirections, and terminated bycantmol opeator. The first word specifies the command to beaited,
and is passed as argument zero. The remaining words are passed as argument®kediverimmand.

The return value of simple commants its exit status, or 128if the command is terminated by sigmal

Pipelines
A pipelineis a sequence of one or more commands separated by the char@beeformat for a pipeline
is:

[time [-p]] [!] command | command2..]

GNU Bash-3.0 2004 June 26 3

BASH(1) BASH(1)

The standard output @bmmands connected via a pipe to the standard inpupofimand2 This connec-
tion is performed before gmedirections specified by the command (RE®IRECTION below).

The return status of a pipeline is the exit status of the last command, unlpgseth# option is enabled.

If pipefail is enabled, the pipelireteturn status is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commandag successfully If the reserved ard! precedes a pipeline, the
exit status of that pipeline is the logicalgagon of the exit status as described \aboThe shell waits for

all commands in the pipeline to terminate before returning a value.

If the time resened word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminafse —p option changes the output format to that spec-

ified by POSIX. The TIMEFORMAT variable may be set to a format string that specifieg the timing
information should be displayed; see the descripticlMEFORMAT underShell Variablesbelow.

Each command in a pipeline iseeuted as a separate process (i.e., in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the opefat&& , or [, and option-
ally terminated by one of &, or <newline>.

Of these list operatorg& and[l have equal precedence, followed hyand&, which hare equal prece-
dence.

A sequence of one or more newlines may appeatfigt imstead of a semicolon to delimit commands.

If a command is terminated by the control operétpthe shell gecutes the command in tis@ackgroundn

a abshell. Theshell does not wait for the command to finish, and the return statuCisr@mands sepa-
rated by g are eecuted sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last commadged.

The control operator&& and[denote AND lists and OR lists, respgely. An AND list has the form
command®& command2

command2s executed if, and only ifcommandZXeturns an exit status of zero.

An OR list has the form

commandIll command2

commandds executed if and only itommandleturns a non-zero exit status. The return status of AND
and OR lists is the exit status of the last commaeduged in the list.

Compound Commands
A compound commarid one of the following:

(list) listis executed in a subshell environment (&8@MMAND EXECUTION ENVIR ONMENT below).
Variable assignments andiiiin commands that affect the shelbnvironment do not remain in
effect after the command completes. The return status is the exit sthstis of

{ list; } list is simply executed in the current shell \dronment. list must be terminated with a newline or
semicolon. Thiss known as group command The return status is the exit statudisf. Note
that unlile the metacharactefsand), { and} arereserved wadsand must occur where a reseav
word is permitted to be recognized. Sinceytde mot cause a word break, theust be separated
from list by whitespace.

((expression)
Theexpressionis evaluated according to the rules described WwaloderARITHMETIC EV ALUA-
TION. If the value of the expression is non-zero, the return status is 0; otherwise the return status
is 1. This is exactly equélent tolet " expression .

[[expression]]
Return a status of 0 or 1 depending on thauation of the conditionalx@ressionexpression
Expressions are composed of the primaries describedv heider CONDITION AL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words betwglen the

GNU Bash-3.0 2004 June 26 4

BASH(1) BASH(1)

and]]; tilde expansion, parameter and variable expansion, arithmetic expansion, command substi-
tution, process substitution, and quote reshare performed. Conditional operators such-&s
must be unquoted to be recognized as primaries.

When the== and!= operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules describedvbaholer Pattern Matching. The return

value is O if the string matches or does not match the pattern, resyecind 1 otherwise.Any

part of the pattern may be quoted to force it to be matched as a string.

An additional binary operatpt”, is available, with the same precedence=asand!=. When it is

used, the string to the right of the operator is consideredkt@mded regular expression and
matched accordingly (as regex(3)). Thereturn value is O if the string matches the pattern, and 1
otherwise. Ifthe regular pression is syntactically incorrect, the conditiongdressiorns return

value is 2. If the shell optiomocaseglobis enabled, the match is performed withowgjard to the

case of alphabetic characters. Substrings matched by parenthesized subexpressions wghin the re
ular expression are wal in the array wriable BASH_REMATCH. The element of
BASH_REMATCH with index O is the portion of the string matching the entire reguiqres-

sion. Theelement ofBASH_REMATCH with index n is the portion of the string matching the

nth parenthesized subexpression.

Expressions may be combined using the failhg operators, listed in decreasing order of prece-
dence:

(expression)
Returns the alue ofexpression This may be used toverride the normal precedence of
operators.
I expression
True if expressionis false.
expression1&& expression2
True if bothexpressionlandexpressionZare true.
expression1l expression2
True if eitherexpressionlor expressionds true.

The && and[operators do notveluate expression2if the value ofexpressionlis sufficient to
determine the return value of the entire conditional expression.

for name[in word] ; dolist ; done
The list of words follaving in is expanded, generating a list of items. Thdablenameis set to
each element of this list in turn, alist is executed each time. If thm word is omitted, thefor
command gecuteslist once for each positional parameter that is set FA&AMETERS below).
The return status is the exit status of the last commandxéaites. Ifthe expansion of the items
following in results in an empty list, no commands afecated, and the return status is O.

for ((exprl; expr2; expr3)) ; dolist ; done
First, the arithmetic>gressionexprl is evaluated according to the rules described welmder
ARITHMETIC EV ALUATION. The arithmetic pressionexpr2 is then gauated repeatedly until
it evaluates to zero. Each timepr2 evduates to a non-zeraalue,list is executed and the arith-
metic expressiorexpr3 is evaluated. Ifary expression is omitted, it betes as if it evaluates to 1.
The return value is the exit status of the last commatfistithat is &ecuted, or false if anof the
expressions is walid.

selectname| in word] ; do list ; done
The list of words follaving in is expanded, generating a list of itenihe set of expandedosds
is printed on the standard erreach preceded by a numbdf thein word is omitted, the posi-
tional parameters are printed (S#RAMETERS belon). ThePS3prompt is then displayed and a
line read from the standard inpuf.the line consists of a number corresponding to one of the dis-
played words, then the value ndmeis set to that wrd. If the line is emptythe words and
prompt are displayed am. If EOF is read, the command completésly other value read causes
nameto be set to null. The line read isved in the \ariableREPLY. Thelist is executed after

GNU Bash-3.0 2004 June 26 5

BASH(1) BASH(1)

each selection until Break command isecuted. Theexit status ofselectis the exit status of the
last command>ecuted inlist, or zero if no commands wereecuted.

casewordin [[(] pattern[| pattern] ...)list ;;] ... esac
A casecommand first xgpandsword, and tries to match it against eaphtternin turn, using the
same matching rules as for pathnameamsion (sed’athname Expansionbelon). Whena
match is found, the correspondiligt is executed. Afterthe first match, no subsequent matches
are attempted. The exit status is zero if no pattern matches. Otherwise, itx#t Hiates of the
last command>ecuted inlist.

if list; then list; [elif list; thenlist;] ... [elselist;] fi
Theif list is executed. Ifits exit status is zero, ttiben list is executed. Otherwisegachelif list
is executed in turn, and if itsx@ status is zero, the corresponditigen list is executed and the
command completes. Otherwise, #iselist is executed, if present. The exit status is thé sta-
tus of the last commandexuted, or zero if no condition tested true.

while list; do list; done

until list; do list; done
Thewhile command continuouslyxecutes thedo list as long as the last commandlist returns
an exit status of zeroThe until command is identical to thehile command, except that the test
is neggaed; thedo list is executed as long as the last commandsnreturns a non-zero exit status.
The exit status of thevhile anduntil commands is the exit status of the ldetlist command
executed, or zero if none wagezuted.

Shell Function Definitions
A shell function is an object that is calleddik smple command andxecutes a compound command with
a rew st of positional parameters. Shell functions are declared as follows:

[function] name() compound—-commanfaedirection|
This defines a function nhamedme The reserved wrd function is optional. If the function
resened word is supplied, the parentheses are optiortat.bodyof the function is the compound
commandcompound—-comman¢seeCompound Commandsaborve). Thatcommand is usually a
list of commands between { and }, but may by aeammand listed undéZompound Commands
abore. compound-commands executed wheneer nameis specified as the name of a simple
command. Aw redirections (Se®EDIRECTION below) specified when a function is defined are
performed when the function igezuted. Theext status of a function definition is zero unless a
syntax error occurs or a readonly function with the same name alrdatly @Vherexecuted, the
exit status of a function is the exit status of the last commaeclited in the body(SeeFUNC-
TIONS below.)

COMMENTS
In a non-interactie dell, or an interacte dell in which theinteractive_commentsoption to theshopt
builtin is enabled (seSHELL BUILTIN COMMANDS belaw), a word beginning with# causes that ard
and all remaining characters on that line to be ignofadinteractive sell without theinteractive_com-
ments option enabled does not allccomments. Thenteractive_commentsoption is on by default in
interactve dells.

QUOTING
Quotingis used to remee the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters vinpreserved words from being recognized as
such, and to prent parameter expansion.

Each of thanetacharactertisted aboe underDEFINITIONS has special meaning to the shell and must be
quoted if it is to represent itself.

When the command history expansion facilities are being usedjstioey expansioncharacterusually!,
must be quoted to prent history expansion.

There are three quoting mechanisms:abeape charactesingle quotes, and double quotes.

A non-quoted backslash) (s the escape learacter. It presenes the literal value of the next character that

GNU Bash-3.0 2004 June 26 6

BASH(1) BASH(1)

follows, with the exception of <mdine>. If a\<newline> pair appears, and the backslash is not itself
guoted, tha<newline> is treated as a line continuation (that is, it is nesidrom the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within thécgilotes.
gle quote may not occur between single quotes) when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of$, ‘, and\. The character§ and’ retain their special meaning within double quot&te
backslash retains its special meaning only when followed by one of the following chaictets:\, or
<newline> A double quote may be quoted within double quotes by preceding it with a backalash.
command history is being used, the double quote may not be used to quote the xpstosior character

The special parametetsaand @ have gecial meaning when in double quotes (R&RAMETERS below).

Words of the forn%'string' are treated speciallyThe word &pands tastring, with backslash-escaped char
acters replaced as specifed by the ANSI C standgadkslash escape sequences, if present, are decoded as

follows:
\a alert (bell)
\b backspace
\e an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\ single quote

\nnn the eight-bit character whose value is the octal vatugone to three digits)
\xHH the eight-bit character whose value is the hexadecimal iu@ne or tvo hex dgits)
\cx a ontrolx character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar si§mw(ill cause the string to be translated according to the
current locale. If the current locale@or POSIX, the dollar sign is ignored. If the string is translated and
replaced, the replacement is double-quoted.

PARAMETERS
A parameteris an entity that storesalues. Itcan be aname a rumber or one of the special characters
listed belov underSpecial Rarameters A variableis a parameter denoted byname A variable has a
valueand zero or morattributes Attributes are assigned using theclare builtin command (seeeclare
below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assignedlaer Thenull string is a valid alue. Once variable is set, it
may be unset only by using thasetbuiltin command (seSHELL BUILTIN COMMANDS below).

A variablemay be assigned to by a statement of the form
name=[valug

If valueis not gven, the variable is assigned the null strifgl valuesundego tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quota (ereEXPANSION
below). If the variable has itmteger attribute set, thewalueis evaluated as an arithmetic expressioere

if the $((...)) expansion is not used (Fe@hmetic Expansion below). Word splitting is not performed,
with the exception of$@" as eplained belas under Special RFairameters Pathname expansion is not
performed. Assignmerdtatements may also appear aguarents to thalias, declare typeset export,
readonly, and local builtin commands.

Positional Parameters
A positional paemeteris a parameter denoted by one or more digits, other than the single drRpsiB.
tional parameters are assigned from the shatjuments when it is wroked, and may be reassigned using

GNU Bash-3.0 2004 June 26 7

BASH(1) BASH(1)

the set builtin command. Positional parameters may not be assigned to with assignment statefrients.
positional parameters are temporarily replaced when a shell functiveciged (se€eUNCTIONS below).

When a positional parameter consisting of more than a single digipaaed, it must be enclosed in
braces (seEXPANSION below).

Special Parameters
The shell treats seral parameters speciallyThese parameters may only be referenced; assignment to
them is not allowed.
* Expands to the positional parameters, starting from dleen the expansion occurs within dou-
ble quotes, it expands to a single word with the value of each parameter separated by the first char
acter of thdFS special ariable. Thats, "$*" is equivalent to '$1c$2c...", wherec is the first char
acter of the value of thi&S variable. If IFS is unset, the parameters are separated by spHces.
IFS is null, the parameters are joined without intervening separators.
@ Expands to the positional parameters, starting from dleen the expansion occurs within dou-
ble quotes, each parameter expands to a sepavede Whatis, "$@" is equivalent to '$1" "$2" ...
When there are no positional paramete$§" and $@ expand to nothing (i.e., tiyeare remaed).
Expands to the number of positional parameters in decimal.
? Expands to the status of the most recentbceted foreground pipeline.
- Expands to the current option flags as specified upmtation, by theset builtin command, or
those set by the shell itself (such as-theption).
$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.
! Expands to the process ID of the most recentdgi@ted background (asynchronous) command.
0 Expands to the name of the shell or shell scriftis is set at shell initializationlf bash is
invoked with a file of commands$0 is set to the name of that filéf bashis started with the-c
option, ther$0 is set to the first argument after the string toXeew@ed, if one is presenOther-
wise, it is set to the file name used teoke bash, as gven by agument zero.
At shell startup, set to the absolute file name of the shell or shell script ketugeel as passed in
the argument list.Subsequentlyexpands to the last argument to the previous command, after
expansion. Alsaet to the full file name of each commamdcaited and placed in theveronment
exported to that command. When checking mail, this parameter holds the name of the mail file
currently being checked.

Shell Variables
The following variables are set by the shell:

BASH Expands to the full file name used tedke this instance obash

BASH_ARGC
An array variable whose values are the number of parameters in each frame of the current bash
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with. or source is at the top of the stack. When a subroutinexiecated, the number of
parameters passed is pushed @AGH_ARGC.

BASH_ARGV
An array \ariable containing all of the parameters in the current bgstuon call stack.The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine xgoeited, the parameters supplied are pushed onto
BASH_ARGV.

BASH_COMMAND
The command currently beingesuted or about to bexecuted, unless the shell igeeuting a
command as the result of a trap, in which case it is the commerutiag at the time of the trap.

BASH_EXECUTION_STRING
The command argument to the invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files corresponding to each mem-
ber of @ar{FUNCNAME}. ${BASH_LINENO] $i]} is the line number in the source file where
${FUNCNAME[S$i + 1]} was alled. The corresponding source file name is

GNU Bash-3.0 2004 June 26 8

BASH(1) BASH(1)

${BASH_SOURCE[$i + 1]}. UseLINENO to obtain the current line number.
BASH_REMATCH
An array variable whose members are assigned by thimary operator to thg conditional com-
mand. Theslement with inde 0 is the portion of the string matching the entirgular expression.
The element with inden is the portion of the string matching thtéh parenthesized sukgres-
sion. Thisvariable is read-only.
BASH_SOURCE
An array \ariable whose members are the source filenames corresponding to the elements in the
FUNCNAME array variable.
BASH_SUBSHELL
Incremented by one each time a subshell or subshell environmentvizeshaTheinitial value is
0.
BASH_VERSINFO
A readonly array ariable whose members hold version information for this instanicashf The
values assigned to the array members are as follows:

BASH_VERSINFOIQ] The major version number (theleass.
BASH_VERSINFO[1] The minor version number (tiversior).
BASH_VERSINFO[2] The patch leel.

BASH_VERSINFOI3] The build version.
BASH_VERSINFOI[4] The release status (e.getal.
BASH_VERSINFO[5] The value oMACHTYPE .

BASH_VERSION
Expands to a string describing the version of this instanbasbt

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor positidinis vari-
able is @ailable only in shell functions iroked by the programmable completion facilities (see
Programmable Completionbelow).

COMP_LINE
The current command lineThis variable is zailable only in shell functions and external com-
mands inoked by the programmable completion facilities (sPeogrammable Completion
below).

COMP_POINT
The index of the current cursor position rebai b the beginning of the current commarnid the
current cursor position is at the end of the current commandathe of this variable is equal to
${#COMP_LINE}. This variable is wilable only in shell functions and external commands
invoked by the programmable completion facilities ($&@grammable Completionbelow).

COMP_WORDBREAKS
The set of characters that the Readline library treatsoad separators when performingnd
completion. IfCOMP_WORDBREAKS is unset, it loses its special propertiegneif it is subse-
quently reset.

COMP_WORDS
An array variable (seArrays below) consisting of the indidual words in the current command
line. Thisvariable is &ailable only in shell functions iroked by the programmable completion
facilities (seeProgrammable Completionbelow).

DIRSTACK
An array variable (seérrays belov) containing the current contents of the directory stack.
Directories appear in the stack in the ordey tae displayed by théirs builtin. Assigningto
members of this array variable may be used to modify directories already in the staitle b
pushd andpopd builtins must be used to add and remalrectories. Assignmertb this \ariable
will not change the current directoryf DIRSTACK is unset, it loses its special propertiegneif
it is subsequently reset.

GNU Bash-3.0 2004 June 26 9

BASH(1) BASH(1)

EUID Expands to the &ctive wser ID of the current useinitialized at shell startupThis variable is
readonly.

FUNCNAME
An array variable containing the names of all shell functions currently inxdoeten call stack.
The element with inde0 is the name of ancurrently-executing shell function. The bottom-most
element is "main”. This variable exists only when a shell functiomdsuéing. Assignmentso
FUNCNAME have ro dfect and return an error statu$.FUNCNAME is unset, it loses its special
properties, een if it is subsequently reset.

GROUPS
An array \ariable containing the list of groups of which the current user is a merAlssign-
ments toGROUPS have ro efect and return an error statu$.GROUPSIis unset, it loses its spe-
cial properties,een if it is subsequently reset.

HISTCMD
The history numbeior index in the history list, of the current commantdl.HISTCMD is unset, it
loses its special propertieven if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine onhelsicis execut-
ing. Thedefault is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or functéhen not in a script or
function, the value substituted is not guaranteed to be meanidfyfuNENO is unset, it loses its
special propertiesyen if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on Whgtis executing, in
the standard GNlpu-company-systefarmat. Thedefault is system-dependent.

OLDPWD
The previous working directory as set by tdiscommand.

OPTARG
The value of the last option argument processed bygétepts builtin command (se&SHELL
BUILTIN COMMANDS below).

OPTIND
The inde of the next agument to be processed by thetopts builtin command (seeSHELL
BUILTIN COMMANDS below).

OSTYPE
Automatically set to a string that describes the operating system on bdshls executing. The
default is system-dependent.

PIPESTATUS
An array variable (seArrays belown) containing a list of exit status values from the processes in
the most-recentlysecuted foreground pipeline (which may contain only a single command).

PPID The process ID of the shalparent. Thisvariable is readonly.
PWD The current working directory as set by tttecommand.

RANDOM
Each time this parameter is referenced, a randorgdanteetween 0 and 32767 is generatéde
sequence of random numbers may be initialized by assigning a v&asibioM . If RANDOM is
unset, it loses its special propertiegreif it is subsequently reset.

GNU Bash-3.0 2004 June 26 10

BASH(1) BASH(1)

REPLY
Set to the line of input read by thead builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds sincevskatian is returned.
If a value is assigned t®ECONDS the value returned upon subsequent references is the number
of seconds since the assignment plus the value assitfn@HCONDSIs unset, it loses its special
properties, een if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
—0 option to theset builtin command (se&SHELL BUILTIN COMMANDS belown). The options
appearing irSHELLOPTS are those reported as by set —a If this variable is in the edronment
whenbash starts up, each shell option in the list will be enabled before readingaatup files.
This variable is read-only.

SHLVL
Incremented by one each time an instandeashis started.

uiD Expands to the user ID of the current ugdtialized at shell startup. This variable is readonly.

The following \ariables are used by the shell. In some cdszsh) assigns a default value to ariable;
these cases are noted belo

BASH_ENV
If this parameter is set whdrashis executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, a¥ibashrc The value 0BASH_ENV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a file namePATH is not used to search for the resultant file name.

CDPATH
The search path for thed command. Thids a colon-separated list of directories in which the
shell looks for destination directories specified by tite command. Asample value is
"."usr!

COLUMNS
Used by theselectbuiltin command to determine the terminal width when printing selection lists.
Automatically set upon receipt of a SIGWINCH.

COMPREPLY
An array variable from whichash reads the possible completions generated by a shell function
invoked by the programmable completion facility (Seegrammable Completionbelow).

EMACS
If bashfinds this variable in the gmonment when the shell starts withluet , it assumes that the
shell is running in an emacs shell buffer and disables line editing.

FCEDIT
The default editor for thi builtin command.

FIGNORE
A colon-separated list of diKes to ignore when performing filename completion Ee&DLINE
belov). A filename whose sfix matches one of the entriesRIGNORE is excluded from the list
of matched filenamesA sample value i8.0:™

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored by patkpame e
sion. Ifa flename matched by a pathname expansion pattern also matches one of the patterns in
GLOBIGNORE, it is remaved from the list of matches.

HISTCONTROL
A colon-separated list of values controllingshcommands are sad on the history list. If the list
of values includeggnorespacelines which bgin with aspacecharacter are notead in the his-
tory list. A value ofignoredupscauses lines matching the yis history entry to not be\sal.
A value ofignorebothis shorthand forgnorespaceandignoredups A value of erasedupgauses
all previous lines matching the current line to be rgatbfrom the history list before that line is

GNU Bash-3.0 2004 June 26 11

BASH(1) BASH(1)

saved. Any value not in the ahe@ list is ignored. If HISTCONTROL is unset, or does not
include a walid value, all lines read by the shell parser auedsan he history list, subject to the
value of HISTIGNORE . The second and subsequent lines of a multi-line compound command
are not tested, and are added to the histgardkess of the value diISTCONTROL .
HISTFILE
The name of the file in which command history igedgseeHISTORY belov). Thedefault value
is "/.bash_history If unset, the command history is novadwhen an interacte sell exits.
HISTFILESIZE
The maximum number of lines contained in the history filéhen this variable is assigned a
value, the history file is truncated, if necesséoycontain no more than that number of lindhe
default value is 500.The history file is also truncated to this size after writing it when an interac-
tive dell exits.
HISTIGNORE
A colon-separated list of patterns used to decide which command lines showeédershe his-
tory list. Each pattern is anchored at thgibeing of the line and must match the complete line
(no implicit *" is appended). Eacpattern is tested a@st the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching charaders, *
matches the previous history liné&' may be escaped using a backslash; the backslash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the hisgargless of the value dISTIGNORE .
HISTSIZE
The number of commands to remember in the command historyH(SE®RY belov). The
default value is 500.
HISTTIMEFORMAT
If this variable is set and not null, itglue is used as a format string &irftimg3) to print the
time stamp associated with each history entry displayed blishary builtin. If this variable is
set, time stamps are written to the history file sy thay be preserved across shell sessions.
HOME
The home directory of the current user; the default argument fardthoeiltin command. The
value of this variable is also used when performing tilde expansion.
HOSTFILE
Contains the name of a file in the same formateds/hoststhat should be read when the shell
needs to complete a hostnanihe list of possible hosthame completions may be changed while
the shell is running; the next time hosthname completion is attempted afteluleeis/ changed,
bash adds the contents of thewdile to the existing list.If HOSTFILE is set, but has noalue,
bash attempts to readetc/hoststo obtain the list of possible hostname completiodghen
HOSTFILE is unset, the hostname list is cleared.
IFS The Internal Field Sepaator that is used for wrd splitting after expansion and to split lines into
words with theread builtin command. The default value is “<space><tab><newline>".
IGNOREEOF
Controls the action of an interaati dell on receipt of aEOF character as the sole input. If set,
the value is the number of conseeattOF characters which must be typed as the first characters
on an input line beforbashexits. If the variable exists but does nowvba rumeric value, or has
no value, the default value is 10. If it does not edst- signifies the end of input to the shell.
INPUTRC
The filename for theeadline startup file, werriding the default of /.inputrc (see READLINE
below).
LANG Used to determine the locale agtey for aty category not specifically selected with anable
starting withLC_.
LC_ALL
This variable werrides the value of ANG and an other LC_ variable specifying a locale cate-

gory.

GNU Bash-3.0 2004 June 26 12

BASH(1) BASH(1)

LC_COLLATE
This variable determines the collation order used when sorting the results of patipansios,
and determines the behavior of rang@ressions, equélence classes, and collating sequences
within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and theidreb& character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings precefled by a

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINES Used by theselectbuiltin command to determine the column length for printing selection lists.
Automatically set upon receipt of a SIGWINCH.

MAIL If this parameter is set to a file name andMi¥éLP AT H variable is not sethashinforms the user
of the arrval of mail in the specified file.

MAILCHECK
Specifies hav often (in secondshashchecks for mail. The default is 60 secontlghen it is time
to check for mail, the shell does so before displaying the primary prdfrtpts variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.

MAILP ATH
A colon-separated list of file names to be checked for mail. The message to be printed when mail
arrives in a prticular file may be specified by separating the file name from the message with a
‘?". Whenused in the text of the message,expands to the name of the current mailfilxam-
ple:

MAILP AT H="/var/mail/bfox?"You hae mail":"/shell-mail?"$_ has mail!"
Bashsupplies a default value for this variablef the location of the user mail files that it uses is
system dependent (e.g., /var/nBliISER).

OPTERR
If set to the value Ihashdisplays error messages generated byg#teptsbuiltin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell ivaked
or a shell script isxecuted.

PATH The search path for commands.is a colon-separated list of directories in which the shell looks
for commands (Se€OMMAND EXECUTION belaw). A zero-length (null) directory name in the
value of PATH indicates the current directonA null directory name may appear aotedjacent
colons, or as an initial or trailing colormhe default path is system-dependent, and is set by the
administrator who installs bash A common value is
/usr/gnu/bin:/ustr/local/bin:/usr/ucb:/bin:/usr/bin

POSIXLY_CORRECT
If this variable is in the environment whbash starts, the shell enteposix modédefore reading
the startup files, as if the-posixinvocation option had been supplied. If it is set while the shell is
running,bashenableposix modeas if he commandet -0 posix had beenecuted.

PROMPT_COMMAND
If set, the value isx@cuted as a command prior to issuing each primary prompt.

PS1 Thewalue of this parameter is expanded BROMPTING below) and used as the primary prompt
string. Thedefault value is \s—\W\$" .

PS2 The value of this parameter is expanded as R8hand used as the secondary prompt strifige
default is > " .

PS3 The value of this parameter is used as the prompt fosdleeztcommand (SeSHELL GRAM-

MAR above).

PS4 The value of this parameter is expanded as R and the alue is printed before each com-
mandbash displays during anxecution trace. The first character dPS4is replicated multiple
times, as necessaty indicate multiple leels of indirection. The default is+ " .

GNU Bash-3.0 2004 June 26 13

BASH(1) BASH(1)

SHELL
The full pathname to the shell is kept in this environmaniable. Ifit is not set when the shell
starts bashassigns to it the full pathname of the current sdedin shell.

TIMEFORMAT
The value of this parameter is used as a format string specifyimghleotiming information for
pipelines prefixed with théme resered word should be displayedlhe % character introduces
an escape sequence that is expanded to a #itne or other information. The escape sequences
and their meanings are as follows; the braces denote optional portions.
%% Aliteral %.
%[plll[R The elapsed time in seconds.
%[plll[lU The number of CPU seconds spent in user mode.
%[pllllS The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.
The optionalp is a digit specifying th@recision the number of fractional digits after a decimal
point. Avalue of 0 causes no decimal point or fraction to be outputnost three places after the
decimal point may be specified; valuespajreater than 3 are changed tolBp is not specified,
the value 3 is used.
The optional specifies a longer format, including minutes, of the fMMmSSFFs. Thevaue
of p determines whether or not the fraction is included.
If this wvariable is not set, bash acts as if it had the ale
$'\nreal\t%63IR\nusert%3lU\nsys%3IS’. If the value is null, no timing information is displayed.
A trailing newline is added when the format string is displayed.

TMOUT

If set to a alue greater than zerdMOUT is treated as the default timeout for tiead builtin.
Theselectcommand terminates if input does not\ariter TMOUT seconds when input is com-
ing from a terminal. In an interacé dell, the value is interpreted as the number of seconds to
wait for input after issuing the primary prompBashterminates after waiting for that number of
seconds if input does not asi

auto_resume

This variable controls e the shell interacts with the user and job conttbthis variable is set,

single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selettelnameof a stopped job, in this
contet, is the command line used to start it. If set to thkieexact, the string supplied must
match the name of a stopped job exactly; if setuostring the string supplied needs to match a
substring of the name of a stopped. jathe substringvalue provides functionality analogous to

the %? job identifier (seeJOB CONTROL below). If set to ag other value, the supplied string

must be a prefix of a stopped jslvame; this provides functionality analogous to ¥hgob iden-

tifier.

histchars

GNU Bash-3.0

The two or three characters which control history expansion and tokenizationH(SE®RY
EXPANSION below). Thefirst character is thaistory expansioncharacterthe character which
signals the start of a history expansion, normadlly The second character is thylick substitu-

tion characterwhich is used as shorthand for re-running the previous command entered, substitut-
ing one string for another in the command. The default.isThe optional third character is the
character which indicates that the remainder of the line is a comment when found as the-first char
acter of a word, normally#'. The history comment character causes history substitution to be
skipped for the remaining words on the linedoes not necessarily cause the shell parser to treat
the rest of the line as a comment.

2004 June 26 14

BASH(1) BASH(1)

Arrays
Bashprovides one-dimensional arraynables. Awy variable may be used as an array;deelare builtin
will explicitly declare an array There is no maximum limit on the size of an armayr ary requirement
that members be inged or essigned contiguouslyArrays are indeed using integers and are zero-based.

An array is created automatically if yamariable is assigned to using the syntemgsubscripj=value
The subscriptis treated as an arithmetic expression that nmuatia@e to a number greater than or equal to
zero. D explicitly declare an arrayuse declare -a hame(seeSHELL BUILTIN COMMANDS below).
declare —a namégsubscrip} is also accepted; theubscriptis ignored. Attributes may be specified for an
array variable using thdeclareandreadonly builtins. Eachattribute applies to all members of an array.

Arrays are assigned to using compound assignments of thenfomes(valuel ... valuen), where each
valueis of the form gubscrip}=string. Only string is required. If the optional brackets and subscript are
supplied, that indeis assigned to; otherwise the indef the element assigned is the last mdssigned to

by the statement plus onéndexing starts at zeroThis syntax is also accepted by ttheclare builtin.
Individual array elements may be assigned to usingdhefsubscripj=valuesyntax introduced ale.

Any element of an array may be referenced usinga®{gsubscripl}. The braces are required toad
conflicts with pathnamexpansion. Ifsubscriptis @ or *, the word expands to all members raime
These subscripts differ only when thend appears within double quotes. If the word is double-quoted,
${namé*]} expands to a single word with thealue of each array member separated by the first character
of the IFS special wariable, and amg¢@]} expands each element ahmeto a separate eovd. When
there are no array membersn&fné@]} expands to nothing. This is analogous to tlkpamsion of the
special parametersand @ (seeSpecial Rarameters above). ${#namgsubscripl} expands to the length

of ${namésubscripf}. If subscriptis * or @, the expansion is the number of elements in the aRafer-
encing an array variable without a subscript is wgemt to referencing element zero.

Theunsetbuiltin is used to destgoarrays. unsetnamgsubscrip} destroys the array element at indsub-
script unsetname wherenameis an arrayor unsetnamgsubscrip}, wheresubscriptis * or @, removes
the entire array.

The declare, local, and readonly builtins each accept aa option to specify an arrayThe read builtin
accepts aa option to assign a list of words read from the standard input to an dinagetanddeclare
builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split antls.wThereare segen kinds of
expansion performedrace &pansiontilde expansion parameter and variablexpansion command sub-
stitution, arithmetic expansiorword litting, and pathname expansion

The order of gpansions is: brace expansion, tilde expansion, pargmat&ble and arithmeticxpansion
and command substitution (done in a left-to-right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansitabke: process substitution

Only brace expansion, word splitting, and pathname expansion can change the numtrels affwhe
expansion; other expansions expand a singbedwo a single wrd. Theonly exceptions to this are the
expansions of $@" and "${nam¢@]}" as eplained abue (SeePARAMETERS).

Brace Expansion
Brace &pansionis a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname xpansion but the flenames generated need miste Patterns to be brace expandedet#ite
form of an optionapreamble followed by either a series of comma-separated strings or a sequpres e
sion between a pair of braces, followed by an optipoatscript The preamble is prefixed to each string
contained within the braces, and the postscript is then appended to each resultingxpairding left to
right.

Brace @pansions may be nested. The results of each expanded string are not sorted; left to right order is
presered. For example, fd,c,l3e expands into ‘ade ace abe’.

A sequence expression takes the fdpy}, wherex andy are either integers or single charactéfghen
integers are supplied, the expression expands to each number betaredy inclusve. When characters

GNU Bash-3.0 2004 June 26 15

BASH(1) BASH(1)

are supplied, the expression expands to each character lexicographically beamdgninclusive. Note
that bothx andy must be of the same type.

Brace expansion is performed before ather expansions, andyacharacters special to othexpansions
are preserved in the result. It is strictlytteal. Bashdoes not apply ansyntactic interpretation to the con-
text of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma or a valid sequenogression. Aw incorrectly formed bracexpansion is left
unchanged. A or, may be quoted with a backslash tover# its being considered part of a bragpres-

sion. To avoid conflicts with parameter expansion, the sti¥igs not considered eligible for bracepan-

sion.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the alve example:

mkdir /usr/local/src/bash/{old,medist,bugs}
or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?* how_ex}}

Brace expansion introduces a slight incompatibility with historical versiosh. o§h does not treat open-
ing or closing braces specially whenyttappear as part of aawd, and preserves them in the outpBash
removes kraces from words as a consequence of brapansion. Br example, a word entered $b as
file{1,2} appears identically in the outputhe same word is output ditel file2after expansion bpash

If strict compatibility withshis desired, stattashwith the+B option or disable brace expansion with the
+B option to thesetcommand (seSHELL BUILTIN COMMANDS below).

Tilde Expansion
If a word begins with an unquoted tilde charact&,(all of the characters preceding the first unquoted
slash (or all characters, if there is no unquoted slash) are considédedpsefix If none of the characters
in the tilde-prefix are quoted, the characters in the tilde-prefixaisifp the tilde are treated as a possible
login name If this login name is the null string, the tilde is replaced with #ieevof the shell parameter
HOME . If HOME is unset, the home directory of the usescaiting the shell is substituted insteadther-
wise, the tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is a “+’, the @lue of the shellariablePWD replaces the tilde-prefix. If the tilde-prefix is
a -, the value of the shellariableOLDPWD, if it is set, is substituted. If the characters following the
tilde in the tilde-prefix consist of a numbi optionally prefied by a ‘+' or a ‘~’, the tilde-prefix is
replaced with the corresponding element from the directory stack, amuilitl Wwe displayed by thdirs
builtin invoked with the tilde-prefix as an gument. Ifthe characters following the tilde in the tilde-prefix
consist of a number without a leading ‘+’ or ‘=, ‘+’ is assumed.

If the login name is welid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is chedlifor unquoted tilde-prefixes immediately following ar =. In these
cases, tilde expansion is also perform&bnsequentlyone may use file names with tildes in assignments
to PATH, MAILP ATH, andCDPATH, and the shell assigns the expanded value.

Parameter Expansion
The ‘$' character introduces parametespansion, command substitution, or arithmetipansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are aptenaltb o-
tect the variable to be expanded from characters immediatelwiiogat which could be interpreted as part
of the name.

When braces are used, the matching ending brace is thg fingit ‘escaped by a backslash or within a
quoted string, and not within an embedded arithmepaesion, command substitution, or paramigraa-
sion.

${paramete}
The value ofparameteris substituted. The braces are required wparameteris a positional
parameter with more than one digit, or whgarameteris followed by a character which is not to
be interpreted as part of its name.

GNU Bash-3.0 2004 June 26 16

BASH(1) BASH(1)

If the first character oparameteris an exclamation point, av@ of variable indirection is introduced.
Bashuses the value of the variable formed from the repatdmeteras the name of the variable; thariv
able is then expanded and thatue is used in the rest of the substitution, rather than the vapszasfe-
teritself. Thisis known asndirect expansion The ceptions to this are the expansions op#§fix*} and
${!nam¢@]} described bela. The exclamation point must immediately follahe left brace in order to
introduce indirection.

In each of the cases beloword is subject to tilde expansion, parameter expansion, command substitution,
and arithmetic xpansion. Whemot performing substringxpansion,bash tests for a parameter that is
unset or null; omitting the colon results in a test only for a parameter that is unset.

${parameter-word}
Use Default \alues If parameteris unset or null, the expansion wbrd is substituted.Other-
wise, the value oparameteris substituted.

${parameter=word}
Assign Default \alues If parameteris unset or null, thexpansion ofword is assigned to
parameter The value ofparameteris then substitutedPositional parameters and special param-
eters may not be assigned to in this way.

${parameter?word}
Display Error if Null or Unset. If parameteris null or unset, the expansionwbrd (or a mes-
sage to that effect Wvord is not present) is written to the standard error and the shell, if it is not
interactve, exits. Otherwisethe value oparameteris substituted.

${parameter+word}
Use Alternate \alue. If parameteris null or unset, nothing is substituted, otherwise ttpae-
sion ofword is substituted.

${parameteroffse}

${ parameteroffsetlength
Substring Expansion. Expands to up téengthcharacters oparameterstarting at the character
specified byoffset If lengthis omitted, expands to the substringpafameterstarting at the char
acter specified bgffset lengthandoffsetare arithmetic expressions (S&RITHMETIC EV ALU-
ATION below). lengthmust ealuate to a number greater than or equal to zHroffsetevduates
to a number less than zero, the value is used as an offset from the encabi¢refparameter If
parameteris @, the result idength positional parameters beginningadtset If parameteris an
array name inded by @ o *, the result is thdength members of the array beginning with
${parametefoffsel}. Substringindexing is zero-based unless the positional parameters are used,
in which case the indexing starts at 1.

${! prefix:}

${! prefixa}
Expands to the names of variables whose names begipmiik separated by the first character
of thelFS special variable.

${!nam¢ @]}

${'namg*]}
If nameis an array variable, expands to the list of array indicegs)lassigned imame If name
is not an arrayexpands to 0 ihameis set and null otherwiséVhen@ is used and thexpansion
appears within double quotes, ea€ly kxpands to a separate word.

${#paramete}
The length in characters of the valuepaframeteris substituted.If parameteris * or @, the
vaue substituted is the number of positional parametdrgparameteris an array name sub-
scripted by* or @, the value substituted is the number of elements in the array.

${parametettword}

${parametetttword}
The word is expanded to produce a pattern just as in pathnapamsion. Ifthe pattern matches
the beginning of the value pairameter then the result of the expansion is tikpanded value of
parameterwith the shortest matching pattern (thé' ‘case) or the longest matching pattern (the

GNU Bash-3.0 2004 June 26 17

BASH(1) BASH(1)

“##" case) deletedlf parameteris @ or *, the pattern rema@l operation is applied to each posi-
tional parameter in turn, and thepansion is the resultant listf parameteris an array ariable
subscripted with@ or *, the pattern remal operation is applied to each member of the array in
turn, and the expansion is the resultant list.

${parameteto word}

${paramete?% word}
Thewordis expanded to produce a pattern just as in pathnapamsion. Ifthe pattern matches a
trailing portion of the expanded value parameter then the result of the expansion is the
expanded value oparameterwith the shortest matching pattern (th&* case) or the longest
matching pattern (thé%% " case) deletedIf parameteris @ or *, the pattern rem@l opera-
tion is applied to each positional parameter in turn, and the expansion is the resultdft list.
parameteris an array ariable subscripted wit@ or *, the pattern remal operation is applied to
each member of the array in turn, and the expansion is the resultant list.

${ parametefpatternstring}

${ parametef/patterrstring}
The pattern is expanded to produce a pattern just as in pathnapansion. Parameter is
expanded and the longest matchpaittern against its \alue is replaced witlstring. In the first
form, only the first match is replaced. The second form causes all matcipagterh to be
replaced withstring. If patternbegins with #, it must match at the beginning of thepanded
value of parameter If patternbegins with %, it must match at the end of the expanded value of
parameter If string is null, matches opatternare deleted and theefollowing patternmay be
omitted. If parameteris @ or *, the substitution operation is applied to each positional parameter
in turn, and thegansion is the resultant listf parameteris an array variable subscripted with
@ or *, the substitution operation is applied to each member of the array in turn, angbahe e
sion is the resultant list.

Command Substitution
Command substitutioallows the output of a command to replace the command ndimere are tw
forms:

$(command
or
‘command

Bashperforms the expansion byeeutingcommandnd replacing the command substitution with the stan-
dard output of the command, withyatrailing newlines deleted. Embedded newlines are not deletéd, b
they may be remwed during word splitting. The command substituti$(cat file) can be replaced by the
equialent but faste(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaajptg e
when followed byg, ‘, or \. The first backquote not preceded by a backslash terminates the command sub-
stitution. Whenusing the $¢ommang form, all characters between the parenthesesmpkhe com-

mand; none are treated specially.

Command substitutions may be nestdd. nest when using the backquoted form, escape the inner back-
guotes with backslashes.

If the substitution appears within double quotes, word splitting and pathngaesen are not performed
on the results.

Arithmetic Expansion
Arithmetic expansion allows thevaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:
$((expression)

The expressionis treated as if it were within double quotest & double quote inside the parentheses is not
treated specially All tokens in the expression undergo parameter expansion, string expansion, command
substitution, and quote rewab. Arithmetic expansions may be nested.

GNU Bash-3.0 2004 June 26 18

BASH(1) BASH(1)

The evaluation is performed according to the rules listed Welmder ARITHMETIC EV ALUATION. If
expressionis invalid, bashprints a message indicating failure and no substitution occurs.

Process Substitution
Process substitutiors supported on systems that support named ppi€©§) or the /dev/fd method of
naming open files. It takes the form<{fist) or >(list). The procesfist is run with its input or output con-
nected to &IFO or some file indev/fd. The name of this file is passed as an argument to the current com-
mand as the result of th&pmansion. Ifthe >(list) form is used, writing to the file will prade input forlist.
If the <(list) form is used, the file passed as an argument should be read to obtain the distput of

When aailable, process substitution is performed simultaneously with parameter and vaxjadohsien,
command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameigraasion, command substitution, and arithmetic expansion that
did not occur within double quotes faord litting.

The shell treats each charactetrd as a delimiterand splits the results of the other expansions iraode/

on these charactersf IFS is unset, or its value ixactly <space><tab><newline>the default, then gn
sequence ofFS characters serves to delimitovds. If IFS has a value other than the default, then
sequences of the whitespace charadpaseandtab are ignored at the beginning and end of the word, as
long as the whitespace character is in thieles ofIFS (an IFS whitespace characterpny character inFs

that is notiFS whitespace, along with gradjacentlFS whitespace characters, delimits a fieldsequence

of IFS whitespace characters is also treated as a delimitéhe value oflIFS is null, no word splitting
occurs.

Explicit null arguments (" or ') are retained. Unquoted implicit null arguments, resulting from the
expansion of parameters thatveamp values, are renved. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless thef option has been sdiash scans each word for the character8, and|.
If one of these characters appears, then threl vs rggarded as gattern and replaced with an alphabeti-
cally sorted list of file names matching the pattelinno matching file names are found, and the shell
option nullglob is disabled, the word is left unchanged. If thdlglob option is set, and no matches are
found, the word is remvad. If thefailglob shell option is set, and no matches are found, an error message
is printed and the command is noeeuted. Ifthe shell optiomocaseglobis enabled, the match is per
formed without rgard to the case of alphabetic charactéfthen a pattern is used for pathnarmpasmsion,
the charactet.” at the start of a name or immediately faling a slash must be matchedgkcitly, unless
the shell optiordotglob is set. When matching a pathname, the slash character nwatsabe matched
explicitly. In other cases, the.” character is not treated speciallgee the description ashopt below
underSHELL BUILTIN COMMANDS for a description of theocaseglobnullglob, failglob, and dotglob
shell options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matcpatteen If GLO-
BIGNORE is set, each matching file hame that also matches one of the patt&ash®BIGNORE is
removed from the list of matchesThe file name$.” and“..” are alays ignored wheiGLOBIGNORE is
set and not nullHowever, $tting GLOBIGNORE to a non-null value has the effect of enablingdbtglob
shell option, so all other file names beginning with.’a will match. To get the old behavior of ignoring
file names beginning with ‘a.”, make“ .*” one of the patterns iIBLOBIGNORE . The dotglob option is
disabled wheiGLOBIGNORE is unset.

Pattern Matching

Any character that appears in a pattern, other than the special pattern characters desonbeutcbles
itself. TheNUL character may not occur in a patters.backslash escapes the following character; the
escaping backslash is discarded when matching. The special pattern characters must be quoseel if the
to be matched literally.

GNU Bash-3.0 2004 June 26 19

BASH(1) BASH(1)

The special pattern characterséie following meanings:

* Matches aw string, including the null string.
? Matches ap single character.
[--] Matches an one of the enclosed charactess pair of characters separated by a hyphen denotes a

range expression any character that sorts between those taracters, incluse, using the cur
rent locale$ wllating sequence and character set, is matcHatie first character following the

is a! or a” then ay character not enclosed is matchélthe sorting order of characters in range
expressions is determined by the current locale and the value bCtheOLLATE shell \ari-
able, if set. A — may be matched by including it as the first or last character in th& §ahay be
matched by including it as the first character in the set.

Within [and], character classesan be specified using the synfaxlass], whereclassis one of
the following classes defined in the POSIX.2 standard:

alnum alpha ascii blank cntrl digit graph lower print punct space upper word
xdigit

A character class matchesyasharacter belonging to that clasEheword character class matches
letters, digits, and the character _.

Within [and], an equivalence classan be specified using the synfaec=], which matches all
characters with the same collation weight (as defined by the current locale) as the aharacter

Within [and], the synta).symbol] matches the collating symbsymbol

If the extglob shell option is enabled using tebopt builtin, several extended pattern matching operators
are recognized. In the following descriptiompattern-listis a list of one or more patterns separated py a
Composite patterns may be formed using one or more of the following sub-patterns:

?(pattern-list)

Matches zero or one occurrence of theagipatterns
*(pattern-lis)

Matches zero or more occurrences of tivergpatterns
+(pattern-lisf

Matches one or more occurrences of thvergpatterns
@ (pattern-lisy

Matches exactly one of thevgn patterns
I(pattern-lisf)

Matches anything except one of theegi patterns

Quote Remawal
After the preceding expansions, all unquoted occurrences of the chakattersl " that did not result
from one of the abe@ e)pansions are remed.

REDIRECTION
Before a command isxecuted, its input and output may kelirectedusing a special notation interpreted
by the shell.Redirection may also be used to open and close files for the currentxebhetian ewiron-
ment. Thefollowing redirection operators may precede or appear anywhere wiimpde commanar
may follow acommand Redirections are processed in the ordey tippear from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirec-
tion operator i<, the redirection refers to the standard input (file descriptotf@pe first character of the
redirection operator is, the redirection refers to the standard output (file descriptor 1).

The word following the redirection operator in the faling descriptions, unless otherwise noted, is sub-
jected to brace expansion, tilde expansion, paramepansion, command substitution, arithmetipan-
sion, quote remal, pathname expansion, and word splitting. If it expands to more than angebash
reports an error.

Note that the order of redirections is significaltr example, the command
Is > dirlist 2>& 1

GNU Bash-3.0 2004 June 26 20

BASH(1) BASH(1)

directs both standard output and standard error to thdidike , while the command
Is 2>& 1 > dirlist

directs only the standard output to filielist, because the standard error was duplicated as standard output
before the standard output was redirecteditst .

Bash handles seeral filenames specially when thare used in redirections, as described in the viotig
table:

/dev/fd/fd
If fd is a valid integeffile descriptoffd is duplicated.
/dev/stdin
File descriptor 0 is duplicated.
/dev/stdout
File descriptor 1 is duplicated.
/dev/stderr
File descriptor 2 is duplicated.
/dev/tcphostport
If hostis a valid hostname or Internet address, poid is an integer port number or ser
vice namepashattempts to open a TCP connection to the corresponding socket.
/dev/udphostport
If hostis a valid hostname or Internet address, pord is an integer port number or ser
vice namepashattempts to open a UDP connection to the corresponding socket.

A failure to open or create a file causes the redirection to fail.

Redirecting Input
Redirection of input causes the file whose name results from the expansiorddd be opened for read-
ing on file descripton, or the standard input (file descriptor Oifs not specified.

The general format for redirecting input is:
[n]<word

Redirecting Output
Redirection of output causes the file whose name results fromphason ofword to be opened for writ-
ing on file descripton, or the standard output (file descriptor 1nifs not specified. If the file does not
exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:
[n]>word

If the redirection operator s, and thenoclobber option to thesetbuiltin has been enabled, the redirection
will fail if the file whose name results from the expansionarfl exists and is a regular file. If the redirec-
tion operator is>|, or the redirection operator is and thenoclobber option to thesetbuiltin command is
not enabled, the redirection is attempteehdf the file named byvord exists.

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results frorpdmsien ofword to be
opened for appending on file descriptoior the standard output (file descriptor 1hifs not specified.If
the file does not exist it is created.

The general format for appending output is:
[n]>>word
Redirecting Standard Output and Standard Error

Bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor 2) to
be redirected to the file whose name is the expansiao@f with this construct.

There are tw formats for redirecting standard output and standard error:

&>word

GNU Bash-3.0 2004 June 26 21

BASH(1) BASH(1)

and
>& word

Of the two forms, the first is preferred. This is semantically edent to
>word 2>& 1

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing only
word (with no trailing blanks) is seen. All of the lines read up to that point are then used as the standard
input for a command.

The format of here-documents is:

<<[-]word
here-document
delimiter

No parameter expansion, command substitution, arithmetic expansion, or pathipansion is performed
onword. If any characters irword are quoted, theelimiter is the result of quote remaa on word, and

the lines in the here-document are nqgpanded. Ifword is unquoted, all lines of the here-document are
subjected to parameter expansion, command substitution, and arithkpetnsien. Inthe latter case, the
character sequentenewline>is ignored, and must be used to quote the characte®sand ‘.

If the redirection operator is<—, then all leading tab characters are stripped from input lines and the line
containingdelimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

Here Srings
A variant of here documents, the format is:

<<<word
Thewordis expanded and supplied to the command on its standard input.

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptot.word expands to one or more digits, the file descriptor denoted
by n is made to be a cgpf that file descriptor If the digits inword do not specify a file descriptor open
for input, a redirection error occur#. word evduates to-, file descriptom is closed.If nis not specified,
the standard input (file descriptor 0) is used.

The operator
[n]>&word

is used similarly to duplicate output file descriptoifsn is not specified, the standard output (file descrip-
tor 1) is used. If the digits imvord do not specify a file descriptor open for output, a redirection error
occurs. Az gecial case, if is omitted, andvord does not expand to one or more digits, the standard out-
put and standard error are redirected as described previously.

Moving File Descriptors
The redirection operator

[n]<&digit—

moves the file descriptodigit to file descriptomn, or the standard input (file descriptor Ohifs not speci-
fied. digit is closed after being duplicatedrio

Similarly, the redirection operator
[n]>&digit—

moves the file descriptodigit to file descripton, or the standard output (file descriptor 1piis not speci-
fied.

GNU Bash-3.0 2004 June 26 22

BASH(1) BASH(1)

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansiowoofl to be opened for both reading and writing on file
descriptom, or on fie descriptor 0 ifh is not specified. If the file does not exist, it is created.

ALIASES
Aliasesallow a dring to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset wéhathandunalias builtin commands
(seeSHELL BUILTIN COMMANDS below). The first word of each simple command, if unquoted, is
checled to see if it has an alias. If so, thairdis replaced by the text of the alias. The charatt&s,
and = and ay of the shellmetacharacter®r quoting characters listed algomay not appear in an alias
name. Theeplacement t& may contain anvalid shell input, including shell metacharacters. The first
word of the replacement text is tested for aliases, butrd ¥hat is identical to an alias being expanded is
not expanded a second time. This means that one maysdtds —F, for instance, antashdoes not try
to recursrely expand the replacementite If the last character of the alias value islank, then the net
command word following the alias is also checked for alias expansion.

Aliases are created and listed with #tes command, and remed with theunalias command.

There is no mechanism for using arguments in the replacemeéentftarguments are needed, a shell func-
tion should be used (SE&INCTIONS below).

Aliases are not expanded when the shell is not inteeactnless theexpand_aliasesshell option is set
usingshopt (see the description shoptunderSHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aliases ared@neonfusing.Bash always reads at least
one complete line of input beforgeeuting ary of the commands on that line. Aliases are expanded when
a ommand is read, not when it igeeuted. Thereforean alias definition appearing on the same line as
another command does not ¢aéffect until the next line of input is read. The commands following the
alias definition on that line are not affected by the akas. Thisbehaior is also an issue when functions
are eecuted. Aliaseare epanded when a function definition is read, not when the functioxecsited,
because a function definition is itself a compound commasda consequence, aliases defined in a func-
tion are not wailable until after that function isxecuted. D be sfe, alvays put alias definitions on a sepa-
rate line, and do not uséiasin compound commands.

For aimost every purpose, aliases are superseded by shell functions.

FUNCTIONS
A shell function, defined as described abander SHELL GRAMMAR , stores a series of commands for
later execution. Whenthe name of a shell function is used as a simple command name, the list of com-
mands associated with that function namexegeted. Functiongre executed in the context of the current
shell; no ne process is created to interpret them (contrast this withxdmitgon of a shell script). When a
function is &ecuted, the @uments to the function become the positional parameters duringgtgien.
The special parametéris updated to reflect the changgpecial parameter 0 is unchanged. The first ele-
ment of theFUNCNAME variable is set to the name of the function while the functiorkésiging. All
other aspects of the shelleeution environment are identical between a function and its caller with the
exception that theDEBUG trap (see the description of theap builtin under SHELL BUILTIN COM-
MANDS belaw) is not inherited unless the function has be&ergihetrace attribute (see the description of
the declare builtin below) or the—o functrace shell option has been enabled with #etbuiltin (in which
case all functions inherit tHeEBUG trap).

Variables local to the function may be declared withltdoal builtin command. Ordinarily, variables and
their values are shared between the function and its caller.

If the kuiltin commandreturn is executed in a function, the function completes axetation resumes with

the next command after the function callny command associated with tiRETURN trap is eecuted

before a&ecution resumesWhen a function completes, the values of the positional parameters and the spe-
cial parametett are restored to the valuesyh®ad prior to the functios’ execution.

GNU Bash-3.0 2004 June 26 23

BASH(1) BASH(1)

Function names and definitions may be listed with-theption to thedeclare or typeset builtin com-
mands. The-F option todeclare or typesetwill list the function names only (and optionally the source
file and line numbeif the extdebugshell option is enabled)-unctions may be exported so that subshells
automatically hee them defined with thef option to theexport builtin. Note that shell functions andavi-
ables with the same name may result in multiple identically-named entries irvitfemerent passed to the
shell’s children. Careshould be taken in cases where this may cause a problem.

Functions may be recuvsl No limit is imposed on the number of recuesialls.

ARITHMETIC EVALU ATION
The shell allvs arithmetic expressions to beakated, under certain circumstances (seel¢heand
declare builtin commands andrithmetic Expansion). Evaluation is done in fed-width integers with no
check for @erflow, though dvision by 0 is trapped and flagged as an erfidre operators and their prece-
dence, associaity, and values are the same as in the C langudde following list of operators is
grouped into leels of equal-precedence operators. Thelkeare listed in order of decreasing precedence.

id++ id——
variable post-increment and post-decrement
++id —-id
variable pre-increment and pre-decrement
-+ unary minus and plus
- logical and bitwise rgetion
** exponentiation
*/% multiplication, division, remainder
+ - addition, subtraction
<< >> left and right bitwise shifts
<=>=<>
comparison
=== equality and inequality
& bitwise AND
a bitwise exclusie CR
| bitwise OR
&& logical AND
Il logical OR

expr?expr:expr
conditional operator

=*= [=0p= 4= —= <<= >>= &= "= |:
assignment

exprl, expr2
comma

Shell variables are allowed as operands; parameter expansion is performed before the expredsion is e
ated. Wthin an expression, shell variables may also be referenced by name without using the parameter
expansion syntaxA shell variable that is null or unsevatuates to 0 when referenced by name without
using the parameter expansion syntdhe value of a variable isva@luated as an arithmeticxgression

when it is referenced, or when ariable which has beenvgh the integer attribute usingdeclare 4 is
assigned aalue. Anull value &aluates to 0.A shell variable need not ke its integer attribute turned on

to be used in an expression.

Constants with a leading O are interpreted as octal numBetsading Ox or 0X denotes Xsdecimal.
Otherwise, numbers takhe form pasefn, wherebaseis a decimal number between 2 and 64 represent-
ing the arithmetic base, amds a number in that baséf. base#is omitted, then base 10 is used. The digits
greater than 9 are represented by the lowercase letters, the uppercase letters, @, and _, in theaseder

is less than or equal to 36wercase and uppercase letters may be used interchangably to represent num-
bers between 10 and 35.

Operators arevaluated in order of precedenc8ub-&pressions in parentheses avelgated first and may
overide the precedence rules abo

GNU Bash-3.0 2004 June 26 24

BASH(1) BASH(1)

CONDITIONAL EXPRESSIONS
Conditional expressions are used by[fheompound command and ttest and[builtin commands to test
file attributes and perform string and arithmetic comparisons. Expressions are formed from whagfollo
unary or binary primaries. If gnfile argument to one of the primaries is of the folaev/fd/n then file
descriptorn is checled. If the file agument to one of the primaries is one/@év/stdin /dev/stdout or
/dev/stderrfile descriptor 0, 1, or 2, respedy, is checked.

—afile True iffile exists.
—-bfile True iffile exists and is a block special file.
—cfile True iffile exists and is a character special file.
—dfile True iffile exists and is a directory.
—efile True iffile exists.
—ffile True iffile exists and is a regular file.
—gfile True iffile exists and is set-group-id.
—hfile True iffile exists and is a symbolic link.
-k file True iffile exists and its “sticky’bit is set.
—pfile True iffile exists and is a named pipe (FIFO).
—r file True iffile exists and is readable.
—sfile True iffile exists and has a size greater than zero.
-tfd True if file descriptorfd is open and refers to a terminal.
—-ufile True iffile exists and its set-user-id bit is set.
-w file True iffile exists and is writable.
—-xfile True iffile exists and is xecutable.
—Ofile True iffile exists and is owned by the effactiuser id.
-G file True iffile exists and is owned by the effacigoup id.
-L file True iffile exists and is a symbolic link.
—-Sfile True iffile exists and is a socket.
—-N file True iffile exists and has been modified since it was last read.
filel—-nt file2
True iffilelis newer (according to modification date) thide?, or if filel exists andfile2 does not.
filel-ot file2
True iffilelis older tharfile2, or if file2 exists andilel does not.
filel —effile2
True iffilel andfile2 refer to the same device and inode numbers.
-0 optname
True if shell optionoptnameis enabled.See the list of options under the description of-the
option to thesetbuiltin below.
-z string
True if the length o$tringis zero.
string
—n string
True if the length otring is non-zero.

string1l== string2
True if the strings are equat may be used in place ef for strict POSIX compliance.

string1!= string2
True if the strings are not equal.

string1< string2
True if string1sorts beforestring2lexicographically in the current locale.

string1> string2
True if string1sorts aftestring2lexicographically in the current locale.

GNU Bash-3.0 2004 June 26 25

BASH(1) BASH(1)

argl OP arg2
OP is one of-eq, —ne, —It, -le, —gt, or —ge These arithmetic binary operators return truargfl
is equal to, not equal to, less than, less than or equal to, greater than, or greater than or equal to
arg2, respectiely. Arglandarg2 may be positie a negdive integers.

SIMPLE COMMAND EXPANSION
When a simple command igeeuted, the shell performs the folllng expansions, assignments, and redi-
rections, from left to right.

1. Thewords that the parser has marked asiable assignments (those preceding the command
name) and redirections areved for later processing.

2. Thewords that are not variable assignments or redirectionsxpanded. Ifary words remain
after expansion, the first word is taken to be the name of the command and the remaiding w
are the arguments.

Redirectionsire performed as described ebanderREDIRECTION .

Thetext after the= in each variable assignment undergoes tilde expansion, paraxpdesien,
command substitution, arithmetic expansion, and quotevarnefore being assigned to tharis
able.

If no command name results, the variable assignments affect the current\@hetireent. Otherwisehe
variables are added to the environment of theceted command and do not affect the current shell en
ronment. Ifary of the assignments attempts to assign a value to a readuordyple, an error occurs, and
the command exits with a non-zero status.

If no command name results, redirections are performed, but ddfexttthe current shell gmonment. A
redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansiarcion proceeds as described beldOtherwise, the
command gits. If one of the expansions contained a command substitution, the exit status of the command
is the it status of the last command substitution performed. If there were no command substitutions, the
command exits with a status of zero.

COMMAND EXECUTION
After a command has been split intonds, if it results in a simple command and an optional listgif-ar
ments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by
that name, that function isvioked as @scribed abee in FUNCTIONS. If the name does not match a func-
tion, the shell searches for it in the list of shelltns. If a match is found, that builtin is woked.

If the name is neither a shell function norwiltin, and contains no slashdmshsearches each element of
the PATH for a directory containing arxecutable file by that nameBash uses a hash table to remember
the full pathnames ofxecutable files (sedash under SHELL BUILTIN COMMANDS below). A full
search of the directories PATH is performed only if the command is not found in the hash table. If the
search is unsuccessful, the shell prints an error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, thecsted| the
named program in a separakeaition ewironment. Agument 0 is set to the nameai, and the remain-
ing arguments to the command are set to the argumeets diary.

If this execution fails because the file is not iReeutable format, and the file is not a directdtyis
assumed to be shell script a file containing shell command#\ subshell is spawned toecute it. This
subshell reinitializes itself, so that the effect is as ifva steell had been woked to handle the script, with
the exception that the locations of commands remembered by the pareimagkdelon under SHELL
BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning witH, the remainder of the first line specifies an interpreter for the pro-
gram. Theshell xecutes the specified interpreter on operating systems that do not handiethislge
format themseles. Thearguments to the interpreter consist of a single optiorgainent following the
interpreter name on the first line of the program, we#ld by the name of the program, followed by the

GNU Bash-3.0 2004 June 26 26

BASH(1) BASH(1)

command arguments, if gn

COMMAND EXECUTION ENVIRONMENT
The shell has aexecution environmentvhich consists of the following:

. open files inherited by the shell avatation, as modified by redirections supplied to ¢kxec
builtin

. the current working directory as setdxy, pushd, or popd, or inherited by the shell atwncation

. the file creation mode mask as seubyask or inherited from the shedi’parent

. current traps set blyap

. shell parameters that are set by variable assignment osetitr inherited from the shedi’parent
in the environment

. shell functions defined duringcecution or inherited from the sheallparent in the environment

. options enabled atwocation (either by default or with command-line arguments) aeby

. options enabled bghopt

. shell aliases defined withlias

. various process IDs, including those of background jobs, the vafif afd the value o$PPID

When a simple command other thanuitn or shell function is to bexecuted, it is ivoked in a ®parate
execution environment that consists of the faling. Unlessotherwise noted, the values are inherited from

the shell.

. the shells goen files, plus anmodifications and additions specified by redirections to the com-
mand

. the current working directory

. the file creation mode mask

. shell variables and functions marked for export, along with variables exported for the command,

passed in the environment

. traps caught by the shell are reset to @lees inherited from the shallparent, and traps ignored
by the shell are ignored

A command inoked in this separate environment cannot affect the shacution environment.

Command substitution, commands grouped with parentheses, and asynchronous commarakedie in

a wbshell environment that is a duplicate of the shelirenment, except that traps caught by the shell are
reset to the values that the shell inherited from its parentatation. Builtincommands that arevioked

as part of a pipeline are alsgeeuted in a subshell emonment. Changemade to the subshell\&ron-
ment cannot affect the shelixecution environment.

If a command is followed by & and job control is not aet, the default standard input for the command
is the empty filgdev/null Otherwise, the moked command inherits the file descriptors of the calling shell
as modified by redirections.

ENVIRONMENT
When a program is woked it is given an aray of strings called thenvironment This is a list of
name-valuepairs, of the fornrmame=value

The shell provides seral ways to manipulate the @inonment. Oninvocation, the shell scans itsvo
ervironment and creates a parameter for each name found, automatically markimgg@ofoto child pro-
cesses. Eecuted commands inherit theveonment. Theexport anddeclare -x commands ally param-
eters and functions to be added to and deleted from themment. Ifthe \alue of a parameter in the
ervironment is modified, the mevalue becomes part of the environment, replacing the old. Theen
ment inherited by gnexecuted command consists of the slsailfiitial environment, whose values may be

GNU Bash-3.0 2004 June 26 27

BASH(1) BASH(1)

modified in the shell, less pipairs remeed by the unsetcommand, plus anadditions via theexport and
declare -x commands.

The environment for ansimple commandar function may be augmented temporarily by prefixing it with
parameter assignments, as described@boPARAMETERS. These assignment statements affect only the
environment seen by that command.

If the —k option is set (see theetbuiltin command below), theall parameter assignments are placed in
the environment for a command, not just those that precede the command name.

Whenbash invokes an &ternal command, theaviable is set to the full file name of the command and
passed to that command in its environment.

EXIT STATUS
For the shells purposes, a command which exits with a zero exit status has succeeded. An exit status of
zero indicates succesA. non-zero exit status indicateailfire. Whera command terminates on a fatal sig-
nal N, bashuses the value of 128kas the exit status.

If a command is not found, the child process createdadouée it returns a status of 12f.a command is
found but is notxecutable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

Shell builtin commands return a status ofrO€) if successful, and non-zertalse if an error occurs while
they execute. Allbuiltins return an exit status of 2 to indicate incorrect usage.

Bashitself returns theat status of the last commangeeuted, unless a syntax error occurs, in which case
it exits with a non-zeroalue. Sealso theexit builtin command bele.

SIGNALS
Whenbashis interactve, in the absence of griraps, it ignoreSIGTERM (so thatkill 0 does not kill an
interactive dell), andSIGINT is caught and handled (so that thait builtin is interruptible). In all cases,
bashignoresSIGQUIT. If job control is in effectbashignoresSIGTTIN, SIGTTOU, andSIGTSTP.

Non-kuiltin commands run byash have dgnal handlers set to theales inherited by the shell from its
parent. Whenob control is not in effect, asynchronous commands ig8tBNT and SIGQUIT in addi-
tion to these inherited handlers. Commands run as a result of command substitution igneyloiuek
generated job control signa&$GTTIN , SIGTTOU, andSIGTSTP.

The shell exits by default upon receipt ofSEGHUP. Before exiting, an interacg hell resends the
SIGHUP to all jobs, running or stoppedstopped jobs are seBtGCONT to ensure that tlyereceve te
SIGHUP. To prevent the shell from sending the signal to a particular job, it should bevednfimm the
jobs table with thedisown builtin (see SHELL BUILTIN COMMANDS belov) or marked to not reces
SIGHUP usingdisown —h

If the huponexit shell option has been set wihopt, bashsends &IGHUP to all jobs when an interagé
login shell exits.

If Ofor which a trap has been set, the trap will notxeewed until the command completédlhenbashis
waiting for an asynchronous command via thait builtin, the reception of a signal for which a trap has
been set will cause theait builtin to return immediately with an exit status greater than 128, immediately
after which the trap isxecuted.

JOB CONTROL
Job control refers to the ability to selegly stop Guspenyl the execution of processes and continue
(resum@ their execution at a later pointA user typically employs this facility via an interagiinterface
supplied jointly by the systesterminal driver and bash

The shell associates jab with each pipeline. It &eps a table of currentlkeeuting jobs, which may be
listed with thejobs command. Whelbashstarts a job asynchronously (in thackground, it prints a line
that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated

GNU Bash-3.0 2004 June 26 28

BASH(1) BASH(1)

with this job is 25647.All of the processes in a single pipeline are members of the sam8agsh uses
the job abstraction as the basis for job control.

To facilitate the implementation of the user indéed to job control, the operating system maintains the
notion of acurrent terminal process group IDMembers of this process group (processes whose process
group ID is equal to the current terminal process group ID)uwedeiboard-generated signals sucls#s-

INT. These processes are said to be inftlegound. Backgroundprocesses are those whose process
group ID differs from the terminal; such processes are immunedgbloard-generated signals. Only fore-
ground processes are allowed to read from or write to the terminal. Background processes which attempt to
read from (write to) the terminal are senBKBTTIN (SIGTT OU) signal by the terminal drér, which,

unless caught, suspends the process.

If the operating system on whidiash is running supports job contrddash contains facilities to use it.

Typing thesuspenccharacter (typicallyZ, Control-Z) while a process is running causes that process to be
stopped and returns control bash Typing the delayed suspendharacter (typically’Y, Control-Y)

causes the process to be stopped when it attempts to read input from the terminal, and control to be returned
to bash The user may then manipulate the state of this job, usinggltemmand to continue it in the
background, thég command to continue it in the foreground, or kile command to kill it. A "Z takes

effect immediatelyand has the additional side effect of causing pending output and typeahead to be dis-
carded.

There are a number of ways to refer to a job in the shell. The cha¥adt@roduces a job namelob
numbern may be referred to #n. A job may also be referred to using a prefix of the name used to start
it, or using a substring that appears in its command ke example,%ce refers to a stoppeckjob. If a

prefix matches more than one jdashreports an errorUsing %?ce, on the other hand, refers toyajob
containing the stringein its command line. If the substring matches more than ondgst reports an
error The symbol$6% and%-+ refer to the shely motion of thecurrent joh which is the last job stopped
while it was in the foreground or started in the backgrouHae previous job may be referenced using
%-—. In output pertaining to jobs (e.g., the output of jbles command), the current job isnadys flagged

with a+, and the previous job with a.

Simply naming a job can be used to bring it into thediaend:%1 is a synonym fof' fg %1, bringing
job 1 from the background into the fgreund. Similarly “ %1 &'’ resumes job 1 in the background,
equialent to“ bg %1".

The shell learns immediately whemeea job changes statdNormally, bashwaits until it is about to print a
prompt before reporting changes in a go#fatus so as to not interruptyaother output. If the-b option to
the set builtin command is enabledyash reports such changes immediateny trap onSIGCHLD is
executed for each child that exits.

If an attempt to xit bashis made while jobs are stopped, the shell printsaening messageThe jobs
command may then be used to inspect their status. If a second attexipistonade without an inteen-
ing command, the shell does not print another warning, and the stopped jobs are terminated.

PROMPTING

When eecuting interactrely, bash displays the primary prom@tSiwhen it is ready to read a command,

and the secondary promps2when it needs more input to complete a commaBdsh allows these

prompt strings to be customized by inserting a nhumber of backslash-escaped special characters that are
decoded as follows:

\a an ASCII bell character (07)
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format

the format is passed tetrftimg3) and the result is inserted into the prompt string; an
emptyformatresults in a locale-specific time representation. The braces are required

\e an ASCII escape character (033)

\h the hostname up to the first '’

\H the hostname

\j the number of jobs currently managed by the shell

GNU Bash-3.0 2004 June 26 29

BASH(1) BASH(1)

\l the basename of the shelerminal device name

\n newline

\r carriage return

\s the name of the shell, the basenam&@fthe portion following the final slash)

\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\@ the current time in 12-hour am/pm format

\A the current time in 24-hour HH:MM format

\u the username of the current user

\v the version obash(e.g., 2.00)

\V the release dbash, version + patch kel (e.g., 2.00.0)

\w the current working directoyyvith SHOME abbreviated with a tilde

\W the basename of the current working direcgtaith $HOME abbreviated with a tilde

\I the history number of this command

\# the command number of this command

\$ if the effective UID is 0, a#, otherwise &

\nnn the character corresponding to the octal number

\\ a backslash

\[beggin a sequence of non-printing characters, which could be used to embed a terminal
control sequence into the prompt

\] end a sequence of non-printing characters

The command number and the history number are usudiyatif: the history number of a command is its
position in the history list, which may include commands restored from the history fil&li&GB@RY

below), while the command number is the position in the sequence of commedted during the cur

rent shell session. After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic ®pansion, and quote rewa, subject to the value of tiromptvars shell option (see the
description of theshoptcommand undeSHELL BUILTIN COMMANDS below).

READLINE
This is the library that handles reading input when using an intexahgll, unless the-—noediting option
is given at dell invocation. Bydefault, the line editing commands are similar to those of en¥aes-style
line editing interface is alsovalable. To turn of line editing after the shell is running, use #fteemacs
or +0 vi options to thesetbuiltin (seeSHELL BUILTIN COMMANDS below).

Readline Notation
In this section, the emacs-style notation is used to deregttréles. Controkeys are denoted by ey,
e.g., C—n means Control-NsSimilarly, metakeys are denoted by Mgy, so M—x means Meta—X.(On
keyboards without anetakey, M—x means ESQ, i.e., press the Escapeykten thex key. This males
ESC themeta pefix The combination M—Cx means ESC-Controk- or press the Escapesk then hold
the Control ley while pressing the key.)

Readline commands may bergi numericargumentswhich normally act as a repeat coutometimes,
however, it is the sign of the argument that is significaRessing a ngaive agument to a command that
acts in the forward direction (e.ill-line) causes that command to act in a baatdvdirection. Com-
mands whose behavior with arguments deviates from this are noted belo

When a command is describedkdlfing text, the text deleted is ged for possible future retri@ (yank-

ing). Thekilled text is saed in akill ring. Consecutie kills cause the text to be accumulated into one unit,
which can be yanked all at once. Commands which do not kill text separate the chunks of text on the kill
ring.

Readline Initialization
Readline is customized by putting commands in an initialization filer{tharc file). Thename of this file
is talen from the value of th&lPUTRC variable. Ifthat variable is unset, the defaulffisnputrc. When a
program which uses the readline library starts up, the initialization file is read, anelythedings and
variables are set. There are only avfeasic constructs allowed in the readline initialization fiBdank
lines are ignoredLines beginning with & are comments. Lines beginning witlfandicate conditional

GNU Bash-3.0 2004 June 26 30

BASH(1) BASH(1)

constructs. Othdmes denote &y hindings and variable settings.

The default ky-bindings may be changed with arputrc file. Otherprograms that use this library may
add their own commands and bindings.

For example, placing

M-Control-u: unversal-argument
or
C-Meta-u: unfersal-argument
into theinputrc would male M-C-u eecute the readline commandiversal-argument

The folloving symbolic character names are recogni®dBOUT, DEL, ESC LFD, NEWLINE RET,
RETURN SPC SFACE, and TAB.

In addition to command names, readline allowgsko be lmund to a string that is inserted when tleg ls
pressed (anacrg.

Readline Key Bindings
The syntax for controllingdy bindings in theinputrc file is simple. All that is required is the name of the
command or the text of a macro andey kequence to which it should be bound. The name may be speci-
fied in one of tw ways: as a symbolicey rame, possibly witiMeta— or Control- prefixes, or as ady
sequence.

When using the fornkeyname function—-nameor macrq keynameis the name of ady elled out in
English. Fer example:

Control-u: unversal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"”

In the aboe example,C-u is bound to the functiooniversal-argument, M—DEL is bound to the func-
tion backward-kill-word , and C-o is bound to run the macro expressed on the right hand side (that is, to
insert the text output into the line).

In the second formkeyseq": function—nameor macrqg keyseqdiffers fromkeynameabove in that strings
denoting an entiredy squence may be specified by placing the sequence within double gBotes.
GNU Emacs styledy escapes can be used, as in the followixagngple, but the symbolic character names
are not recognized.

"\C-u": universal-argument

"\C-x\C-r": re—read-init—file

"\e[11™: "Function key 1"
In this ekample,C-u is again bound to the functiamiversal-argument. C-x C-r is bound to the func-
tion re-read-init-file, and ESC [1 1 "is bound to insert the tekunction Key 1

The full set of GNU Emacs style escape sequences is

\C- control prefix
\M- meta prefix
\e an escape character
\\ backslash
\" literal "
\ literal ’
In addition to the GNU Emacs style escape sequences, a second set of backslash egaitgi#s:is a
\a alert (bell)
\b backspace
\d delete
\f form feed
\n newline

GNU Bash-3.0 2004 June 26 31

BASH(1) BASH(1)

\r carriage return
\t horizontal tab
\v vertical tab

\nnn the eight-bit character whose value is the octal vaiugone to three digits)
\xHH the eight-bit character whose value is the hexadecimal iu@ne or tvo hex dgits)

When entering the text of a macro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be a function naiméhe macro bodythe backslash escapes described/@abo
are epanded. Backslashill quote ary other character in the macro text, including " and .

Bashallows the current readlineel¢ indings to be displayed or modified with thied builtin command.
The editing mode may be switched during intevactse by using theo option to thesetbuiltin command
(seeSHELL BUILTIN COMMANDS below).

Readline Variables
Readline has variables that can be used to further customize itédoeavariable may be set in thapu-
trc file with a statement of the form

setvariable—-name value

Except where noted, readline variables cae tak \valuesOn or Off. The \ariables and their default
ues are:

bell-style (audible)
Controls what happens when readlinents to ring the terminal bell. If settone, readline neer
rings the bell. If set twisible, readline uses a visible bell if one igagable. If set toaudible,
readline attempts to ring the termirsattell.

comment-begin (“#")
The string that is inserted when the readlimgert—-commentcommand is xecuted. Thiscom-
mand is bound tM—# in emacs mode and tin vi command mode.

completion—ignore—case (Off)
If set toOn, readline performs filename matching and completion in a case-ingeffestiion.

completion—query—-items (100)
This determines when the user is queried abowtingethe number of possible completions gen-
erated by theossible—completionscommand. Itmay be set to gninteger value greater than or
equal to zero. If the number of possible completions is greater than or equal sdut@fvthis
variable, the user is asked whether or not he wishes wottiem; otherwise theare simply listed
on the terminal.

convert-meta (On)
If set toOn, readline will cowert characters with the eighth bit set to an AS@Y kequence by
stripping the eighth bit and prefixing an escape character (in effect, using escapmetpe-
fix).

disable—completion (Off)
If set toOn, readline will inhibit word completion. Completion characters will be inserted into the
line as if thg had been mapped self-insert

editing—-mode (emacs)
Controls whether readline tias with a set of &y kindings similar teemacsor vi. editing—-mode
can be set to eithemacsor vi.

enable-keypad (Off)
When set tdOn, readline will try to enable the applicatioeypad when it is calledSome sys-
tems need this to enable the arkeys.

expand-tilde (Off)
If set toon, tilde expansion is performed when readline attempts word completion.

history-preserve-point
If set toon, the history code attempts to place point at the same location on each history line
retrived with previous-history or next-history.

GNU Bash-3.0 2004 June 26 32

BASH(1) BASH(1)

horizontal-scroll-mode (Off)
When set t@On, makes readline use a single line for displsgrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrappingvto a ne
line.

input-meta (Off)
If set toOn, readline will enable eight-bit input (that is, it will not strip the high bit from the-char
acters it reads), gardless of what the terminal claims it can suppdie namemeta-flagis a
synonym for this variable.

isearch-terminators (“C—[C-J")
The string of characters that should terminate an incremental search without subsegemuty e
ing the character as a commarifithis variable has not beenvgn a \alue, the characteisSC
andC-J will terminate an incremental search.

keymap (emacs)
Set the current readlineeymap. Theset of valid lkeymap names i€macs, emacs—standhr
emacs—meta, emacs—ctlx, vi, vi-commaaad vi-insert. viis equvalent tovi-commangemacs
is equvalent to emacs—standard The default value i#macs the value ofediting—mode also
affects the defaultdymap.

mark—directories (On)
If set toOn, completed directory namesvea $ash appended.

mark—-modified-lines (Off)
If set toOn, history lines that hae been modified are displayed with a preceding astetisk (

mark—symlinked—-directories (Off)
If set toOn, completed names which are symbolic links to directorieg laatash appended (sub-
ject to the value afnark—directories).

match-hidden—files (On)
This variable, when set ©On, causes readline to match files whose names begin witfihédden
files) when performing filename completion, unless the leading supplied by the user in the
filename to be completed.

output—-meta (Off)
If set toOn, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence.

page—completions (On)
If set toOn, readline uses an internadorelike pager to display a screenful of possible comple-
tions at a time.

print—completions—horizontally (Off)
If set toOn, readline will display completions with matches sorted horizontally in alphabetical
order rather than down the screen.

show-all-if-ambiguous (Off)
This alters the default behavior of the completion functidhset toon, words which hee nore
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.

show-all-if-unmodified (Off)
This alters the default behavior of the completion functions inashién similar to
show-all-if-ambiguous If set to on, words which hae nore than one possible completion
without ary possible partial completion (the possible completions tddrdre a common prefix)
cause the matches to be listed immediately instead of ringing the bell.

visible—stats (Off)
If set toOn, a dharacter denoting a fie'type as reported bstai(2) is appended to the filename
when listing possible completions.

Readline Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor
which allows ley hindings and variable settings to be performed as the result of tests. There are four parser
directives used.

GNU Bash-3.0 2004 June 26 33

BASH(1) BASH(1)

$if The $if construct allavs bindings to be made based on the editing mode, the terminal being used,
or the application using readlindhe text of the test extends to the end of the line; no characters
are required to isolate it.

mode The mode=form of the$if directive is used to test whether readline is in emacs or vi
mode. Thismay be used in conjunction with teet keymap command, for instance, to
set bindings in themacs-standarénd emacs—ctlxkeymaps only if readline is starting
out in emacs mode.

term Theterm= form may be used to include terminal-specify kindings, perhaps to bind
the lkey quences output by the termisafinction leys. Theword on the right side of
the = is tested against the both full name of the terminal and the portion of the terminal
name before the first This allowssunto match botlsunandsun—cmd for instance.

application
The application construct is used to include application-specific settings. Each program
using the readline library sets thpplication namgand an initialization file can test for a
particular \alue. Thiscould be used to bindek squences to functions useful for a spe-
cific program. For instance, the following command addsey kequence that quotes the
current or previous word in Bash:

$if Bash

Quote the current or previous word
"\C-xq": "\eb\"\ef\""

$endif

$endif This command, as seen in the previous example, terminagiscmmand.
$else Commands in this branch of tBd directive ae executed if the test fails.

$include
This directve takes a single filename as amgament and reads commands and bindings from that
file. For example, the following diree would readetc/inputrc

$include /etc/inputrc

Searching
Readline provides commands for searching through the command historigseRY belaw) for lines
containing a specified string. There ar® ®arch modesncrementalandnon-incremental

Incremental searches begin before the user has finished typing the searchAstrilagh character of the

search string is typed, readline displays the patry from the history matching the string typedao An
incremental search requires only as yneimaracters as needed to find the desired history. ety char

acters present in the value of isearch-terminators variable are used to terminate an incremental search.

If that variable has not been assigned a value the Escape and Control-J characters will terminate an incre-
mental searchControl-G will abort an incremental search and restore the original line. When the search is
terminated, the history entry containing the search string becomes the current line.

To find other matching entries in the history list, type Control-S or Control-R as appropriate. This will
search backward or forward in the history for thetmstry matching the search string typed &o Any

other ley :quence bound to a readline command will terminate the searclemuiteethat commandror
instance, anewlinewill terminate the search and accept the line, thergbyuéing the command from the
history list.

Readline remembers the last incremental search string.olComtrol-Rs are typed without wrnnterven-
ing characters defining awesearch string, anremembered search string is used.

Non-incremental searches read the entire search string before starting to search for matching history lines.
The search string may be typed by the user or be part of the contents of the current line.

GNU Bash-3.0 2004 June 26 34

BASH(1) BASH(1)

Readline Command Names
The following is a list of the names of the commands and the deful&kuences to which tieare
bound. Commandames without an accompanyingykequence are unbound by deflt. Inthe followving
descriptionspoint refers to the current cursor position, andrk refers to a cursor position\ea by the
set—-mark command. Théext between the point and mark is referred to astien.

Commands for Moving

beginning-of-line (C-a)
Move 1o the start of the current line.

end-of-line (C-e)
Move 1o the end of the line.

forward—char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M—f)
Move forward to the end of the nextond. Words are composed of alphanumeric characters (let-
ters and digits).

backward-word (M—-b)
Move kack to the start of the current or previousrdv Words are composed of alphanumeric
characters (letters and digits).

clear—screen (C-I)
Clear the screen leaving the current line at the top of the scv@gh.an argument, refresh the
current line without clearing the screen.

redraw—current-line
Refresh the current line.

Commands for Manipulating the History

accept-line (Newline, Return)
Accept the line rgardless of where the cursor is. If this line is non-ematy it to the history list
according to the state of thBSTCONTROL variable. Ifthe line is a modified history line, then
restore the history line to its original state.

previous—history (C—p)
Fetch the previous command from the history list, moving back in the list.

next-history (C—n)
Fetch the next command from the history list, moving forward in the list.

beginning-of-history (M-<)
Move 1 the first line in the history.

end-of-history (M—>)
Move o the end of the input histarige., the line currently being entered.

reverse—search-history (C-r)
Search backerd starting at the current line and moving ‘up’ through the history as necessary
This is an incremental search.

forward—search-history (C-s)
Search forward starting at the current line andringp ‘down’ through the history as necessary
This is an incremental search.

non-incremental-revase—-search-history (M—p)
Search backward through the history starting at the current line using a non-incremental search for
a dring supplied by the user.

non-incremental-forward—-search—-history (M—n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history—search—forward
Search fonard through the history for the string of characters between the start of the current line
and the point. This is a non-incremental search.

GNU Bash-3.0 2004 June 26 35

BASH(1) BASH(1)

history—search—backward
Search backward through the history for the string of characters between the start of the current
line and the point. This is a non-incremental search.

yank-nth-arg (M—-C-y)
Insert the first argument to the previous command (usually the second word on the previous line)
at point. With an agumentn, insert thenth word from the previous command (the words in the
previous command begin with word O negdive agument inserts thath word from the end of
the previous command.

yank-last-arg (M-., M—_)
Insert the last argument to the yiceis command (the last word of the previous history entry).
With an argument, beta exactly like yank—nth—-arg. Successie alls toyank-last—arg move
back through the history list, inserting the last argument of each line in turn.

shell-expand-line (M-C-e)
Expand the line as the shell doéshis performs alias and history expansion as well as all of the
shell word &pansions. SedISTORY EXPANSION below for a description of history expansion.

history—expand-line (M-")
Perform history gpansion on the current line&SeeHISTORY EXPANSION below for a descrip-
tion of history expansion.

magic—space
Perform history expansion on the current line and insert a sfE@eHISTORY EXPANSION
belon for a description of history expansion.

alias—expand-line
Perform alias expansion on the current lig®2eALIASES above for a description of aliasxpan-
sion.

history—and-alias—expand-line
Perform history and alias expansion on the current line.

insert-last-argument (M-, M—_)
A synonym foryank-last-arg.

operate—and-get—-next (C-0)
Accept the current line forxecution and fetch the next line relati o the current line from the
history for editing. Al argument is ignored.

edit—-and—-execute—command (C-xC-e)
Invoke an editor on the current command line, andeaute the result as shell commandgash
attempts to imoke $FCEDIT, $EDITOR, andemacsas the editgrin that order.

Commands for Changing Text

delete—char (C-d)
Delete the character at point. If point is at the beginning of the line, there are no characters in the
line, and the last character typed was not bounigete—char, then returreOF.

backward-delete—char (Rubout)
Delete the character behind the curséfhen gven a rumeric argument, sa the deleted text on
the kill ring.

forward—-backward—delete—char
Delete the character under the cursoiess the cursor is at the end of the line, in which case the
character behind the cursor is deleted.

guoted-insert (C—-q, C-v)
Add the net character typed to the linerbatim. Thisis haw to insert characters &kC-q, for
example.

tab—insert (C-v TAB)
Insert a tab character.

self-insert (a, b, A, 1,1, ...)
Insert the character typed.

transpose—chars (C-t)
Drag the character before point f@awd oser the character at point, moving point forward as well.
If point is at the end of the line, then this transposes tloedharacters before pointiNegative

GNU Bash-3.0 2004 June 26 36

BASH(1) BASH(1)

arguments heae ro efect.

transpose-words (M-t)
Drag the word before point past thend after point, moving pointver that word as well. If point
is at the end of the line, this transposes the lasttards on the line.

upcase-word (M-u)
Uppercase the current (or following)ord. Wth a n@aive agument, uppercase the pigus
word, but do not mee point.

downcase-word (M-I)
Lowercase the current (or following)ond. Wth a negaive agument, lowercase the pieus
word, but do not mee point.

capitalize-word (M—c)
Capitalize the current (or following) ard. Wth a n@aive agument, capitalize the privus
word, but do not mee point.

overwrite—mode
Toggle orerwrite mode. With an explicit positie rumeric argument, switches teawrite mode.
With an eplicit non-positve rumeric argument, switches to insert mode. This commdedtaf
only emacsmode;vi mode does werwrite differently Each call toreadline() starts in insert
mode. Inoverwrite mode, characters bound delf-insert replace the text at point rather than
pushing the text to the righCharacters bound teackward—delete—charreplace the character
before point with a space. By default, this command is unbound.

Killing and Yanking
kill-line (C-k)
Kill the text from point to the end of the line.
backward-kill-line (C—x Rubout)
Kill backward to the beginning of the line.
unix-line—discard (C-u)
Kill backward from point to the beginning of the line. The killed text ised@n the kill-ring.
kill-whole-line
Kill all characters on the current line, no matter where point is.
kill-word (M-d)
Kill from point to the end of the currentord, or if between words, to the end of the neatdv
Word boundaries are the same as those uséahvard—word .
backward-kill-word (M—Rubout)
Kill the word behind point.Word boundaries are the same as those uséadkward—-word.
unix-word-rubout (C-w)
Kill the word behind point, using white space asadwoundary The killed text is seed on he
kill-ring.
unix—filename-rubout
Kill the word behind point, using white space and the slash character asrthbaundariesThe
killed text is saed on he Kill-ring.
delete—horizontal-space (M-\)
Delete all spaces and tabs around point.
kill-region
Kill the text in the current region.
copy-region—as—Kkill
Copy the text in the region to the kill buffer.
copy—-backward-word
Copy the word before point to the killuffer. The word boundaries are the same kack-
ward-word.
copy—forward-word
Copy the word following point to the kill iffer. The word boundaries are the samefas
ward-word.

GNU Bash-3.0 2004 June 26 37

BASH(1) BASH(1)

yank (C-y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)
Rotate the kill ring, and yank thew¢op. Onlyworks followingyank or yank—pop.

Numeric Arguments

digit-argument (M-0, M-1, ..., M—-)
Add this digit to the @yument already accumulating, or start &/ megument. M—-starts a ng-
ative agument.

universal-argument
This is another ay to specify an gument. Ifthis command is followed by one or more digits,
optionally with a leading minus sign, those digits define tigeiraent. Ifthe command is fol-
lowed by digits, recuting universal-argument again ends the numeric argument, but is other
wise ignored.As a special case, if this command is immediately followed by a character that is
neither a digit or minus sign, the argument count for the next command is multiplied .by tieur
argument count is initially one, sxeuting this function the first time makes the argument count
four, a £cond time makes the argument count sixteen, and so on.

Completing
complete (TAB)
Attempt to perform completion on the text before poiBash attempts completion treating the
text as a variable (if the text begins wighy username (if the x¢ begins with”), hostname (if the
text begins with@), or command (including aliases and functions) in tufmone of these pro-
duces a match, flename completion is attempted.
possible-completions (M-?)
List the possible completions of the text before point.
insert-completions (M-*)
Insert all completions of the text before point that wouldehlleen generated lyyossible—com-
pletions.
menu-complete
Similar tocompletg but replaces the word to be completed with a single match from the list of
possible completions. Repeatexkaution of menu—-completesteps through the list of possible
completions, inserting each match in turn. At the end of the list of completions, the bell is rung
(subject to the setting difell-style) and the original text is restored. An argumeninahaoves n
positions forward in the list of matches; agaese agument may be used to m® backward
through the list. This command is intended to be boufd®, but is unbound by default.
delete—char-or-list
Deletes the character under the cursor if not at the beginning or end of the dinkel@iie—chay).
If at the end of the line, betes identically topossible—completions This command is unbound
by default.
complete—filename (M-/)
Attempt filename completion on the text before point.
possible-filename—completions (C-x /)
List the possible completions of the text before point, treating it as a filename.
complete—username (M-")
Attempt completion on the text before point, treating it as a username.
possible-username-completions (C-x ")
List the possible completions of the text before point, treating it as a username.
complete—variable (M—$)
Attempt completion on the text before point, treating it as a shell variable.
possible-variable—completions (C—x $)
List the possible completions of the text before point, treating it as a shell variable.
complete—-hostname (M-@)
Attempt completion on the text before point, treating it as a hostname.

GNU Bash-3.0 2004 June 26 38

BASH(1) BASH(1)

possible-hostname—-completions (C-x @)
List the possible completions of the text before point, treating it as a hostname.
complete—command (M-!)
Attempt completion on the text before point, treating it as a command rfaamemand comple-
tion attempts to match the text against aliases, reserved words, shell functions, shell builtins, and
finally executable filenames, in that order.
possible-command-completions (C—x !)
List the possible completions of the text before point, treating it as a command name.
dynamic—complete—history (M-TAB)
Attempt completion on the text before point, comparing the texihaglines from the history list
for possible completion matches.
complete-into—braces (M—{)
Perform filename completion and insert the list of possible completions enclosed within braces so
the list is @ailable to the shell (seBrace Expansionabove).

Keyboard Macros
start—kbd-macro (C—x ()
Begin saving the characters typed into the curreyltidard macro.
end-kbd-macro (C—x))
Stop saving the characters typed into the curreylidard macro and store the definition.
call-last-kbd-macro (C-x e)
Re-&ecute the last éypoard macro defined, by making the characters in the macro appear as if
typed at the &yboard.

Miscellaneous

re—read-initfile (C—x C-r)
Read in the contents of theputrc file, and incorporate gnbindings or variable assignments
found there.

abort (C-g)
Abort the current editing command and ring the termsn&Bll (subject to the setting of
bell-style).

do-uppercase-version (M-a, M-b, M, ...)
If the metafied characteris lowercase, run the command that is bound to the corresponding
uppercase character.

prefix-meta (ESC)
Metafy the next character type&SCf is equvalent toMeta—f.

undo (C-_, C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This i lé&ecuting theundo command enough times to
return the line to its initial state.

tilde—expand (M-&)
Perform tilde expansion on the current word.

set-mark (C-@, M—-<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.

exchange—point—and-mark (C-x C-x)
Swap the point with the markThe current cursor position is set to theeslgposition, and the old
cursor position is s&d as he mark.

character—search (C-])
A character is read and point is wed to the next occurrence of that charactérnegdive count
searches for previous occurrences.

character—search—backward (M—-C-])
A character is read and point is ved to the previous occurrence of that charact&rnegaive
count searches for subsequent occurrences.

GNU Bash-3.0 2004 June 26 39

BASH(1) BASH(1)

insert—-comment (M—#)
Without a numeric argument, the value of the readlorament-beginvariable is inserted at the
beginning of the current linelf a numeric argument is supplied, this command acts as a tafjgle:
the characters at thedirning of the line do not match the valuecomment-begin the value is
inserted, otherwise the charactercamment-beginare deleted from the beginning of the line.
In either case, the line is accepted as if wline had been typed. The default valuecom-
ment—begin causes this command to neake current line a shell commenf. a numeric agu-
ment causes the comment character to bevednthe line will be recuted by the shell.
glob—complete-word (M—g)
The word before point is treated as a pattern for pathname expansion, with an asterisk implicitly
appended. Thipattern is used to generate a list of matching file names for possible completions.
glob-expand-word (C—x *)
The word before point is treated as a pattern for pathname expansion, and the list of matching file
names is inserted, replacing therd. If a numeric argument is supplied, an asterisk is appended
before pathname expansion.
glob-list-expansions (C-x @)
The list of expansions that wouldvgaleen generated bylob—expand-wordis displayed, and
the line is redran. If a rumeric argument is supplied, an asterisk is appended before pathname
expansion.
dump-functions
Print all of the functions and theiek dndings to the readline output stream. If a numeriuar
ment is supplied, the output is formatted in such a way that it can be made panpoftarfile.
dump-variables
Print all of the settable readlineanables and their values to the readline output stream. If a
numeric argument is supplied, the output is formatted in such a way that it can be made part of an
inputrcfile.
dump-macros
Print all of the readlinedy quences bound to macros and the strings dbput. If a rumeric
argument is supplied, the output is formatted in such a way that it can be made paripoftian
file.
display-shell-version (C—x C-v)
Display version information about the current instandeash

Programmable Completion
When word completion is attempted for an argument to a command for which a completion specification (a
compsperhas been defined using tkemplete builtin (see SHELL BUILTIN COMMANDS belaw), the
programmable completion facilities areaked.

First, the command name is identifiefl.a compspec has been defined for that command, the compspec is
used to generate the list of possible completions for tire.wif the command word is a full pathname, a
compspec for the full pathname is searched for fifsho compspec is found for the full pathname, an
attempt is made to find a compspec for the portion following the final slash.

Once a compspec has been found, it is used to generate the list of maitmtidag Ma compspec is not
found, the defaulbashcompletion as described almounderCompleting is performed.

First, the actions specified by the compspec are uSetl matches which are prefixed by the word being
completed are returned. When thieor —d option is used for filename or directory name completion, the
shell variableFIGNORE is used to filter the matches.

Any completions specified by a filename expansion pattern teGheption are generated xte Thewords
generated by the pattern need not match thel Weing completedThe GLOBIGNORE shell variable is
not used to filter the matches, but HENORE variable is used.

Next, the string specified as the argument to-t#A¢ option is considered. The string is first split using the
characters in th&S special variable as delimiters. Shell quoting is honoiegich word is thenxpanded

using brace expansion, tilde expansion, parameter and variable expansion, command substitution, arith-
metic expansion, and pathname expansion, as described aimer EXPANSION. The results are split

GNU Bash-3.0 2004 June 26 40

BASH(1) BASH(1)

using the rules described afowunder Word Splitting. The results of the expansion are prefix-matched
against the word being completed, and the matching words become the possible completions.

After these matches @ been generated, wrshell function or command specified with th€ and-C

options is inoked. Whenthe command or function isvioked, theCOMP_LINE andCOMP_POINT vari-

ables are assigned values as describedeabwler Shell Variables. If a shell function is being woked,

the COMP_WORDS and COMP_CWORD variables are also set. When the function or command is
invoked, the first agument is the name of the command whose arguments are being completed, the second
argument is the word being completed, and the third argument is the word preceding the word being com-
pleted on the current command lingo filtering of the generated completions against the word being com-
pleted is performed; the function or command has complete freedom in generating the matches.

Any function specified with-F is invoked first. Thefunction may use anof the shell facilities, including
the compgenbuiltin described belw, to generate the matche# must put the possible completions in the
COMPREPLY array variable.

Next, ary command specified with theC option is irvoked in an eavironment equialent to command sub-
stitution. Itshould print a list of completions, one per line, to the standard output. Backslash may be used
to escape a newline, if necessary.

After all of the possible completions are generatey fidter specified with the-X option is applied to the
list. Thefilter is a pattern as used for pathname expansién;irathe pattern is replaced with the text of
the word being completedA literal & may be escaped with a backslash; the backslash isredrbefore
attempting a matchAny completion that matches the pattern will be rgadofrom the list. A leading!
negaes the pattern; in this caseyatompletion not matching the pattern will be resred

Finally, any prefix and suffix specified with theP and-S options are added to each member of the com-
pletion list, and the result is returned to the readline completion code as the list of possible completions.

If the previously-applied actions do not generaty amtches, and theo dirnamesoption was supplied to
completewhen the compspec was defined, directory name completion is attempted.

If the —o plusdirs option was supplied toompletewhen the compspec was defined, directory name com-
pletion is attempted and yamatches are added to the results of the other actions.

By default, if a compspec is found, whas#eit generates is returned to the completion code as the full set
of possible completions. The @eft bash completions are not attempted, and the readline default of file-
name completion is disabled. If th@ bashdefaultoption was supplied toompletewhen the compspec
was defined, thebash default completions are attempted if the compspec generates no matches-df the
default option was supplied toomplete when the compspec was defined, readirefault completion

will be performed if the compspec (and, if attempted, the ddfash completions) generate no matches.

When a compspec indicates that directory name completion is desired, the programmable completion func-
tions force readline to append a slash to completed names which are symbolic links to directories, subject
to the value of theamark-directories readline variable, gardless of the setting of thenark-sym-
linked—directories readline variable.

HISTORY
When the-o history option to thesetbuiltin is enabled, the shell provides access tocttramand history
the list of commands pvusly typed. The value of tHelSTSIZE variable is used as the number of com-
mands to s& in a hstory list. The text of the la$tiISTSIZE commands (default 500) is\v&dl. Theshell
stores each command in the history list prior to parameter and variable expansExPEe8ION above)
but after history expansion is performed, subject to the values of the str@bkesHISTIGNORE and
HISTCONTROL .

On startup, the history is initialized from the file named by #reableHISTFILE (default™.bash_history.
The file named by the value BISTFILE is truncated, if necessaty contain no more than the number of
lines specified by the value BiSTFILESIZE . When an interacte sell exits, the las$HISTSIZE lines
are copied from the history list ®HISTFILE . If the histappend shell option is enabled (see the descrip-
tion of shoptunderSHELL BUILTIN COMMANDS belaw), the lines are appended to the history file, ether
wise the history file iswerwritten. If HISTFILE is unset, or if the history file is unwritable, the history is

GNU Bash-3.0 2004 June 26 41

BASH(1) BASH(1)

not saed. After saving the historythe history file is truncated to contain no more thé®TFILESIZE
lines. IfHISTFILESIZE is not set, no truncation is performed.

The builtin commandc (seeSHELL BUILTIN COMMANDS belon) may be used to list or edit and re-
execute a portion of the history lisiThe history builtin may be used to display or modify the history list
and manipulate the history file. When using command-line editing, search commandsiaiokean each
editing mode that provide access to the history list.

The shell allows controlver which commands are wa on the history list. The HISTCONTROL and
HISTIGNORE variables may be set to cause the shell t@ saly a subset of the commands enterg&te
cmdbhist shell option, if enabled, causes the shell to attemptvi® each line of a multi-line command in
the same history entrgdding semicolons where necessary to preseratactic correctnessThe lithist
shell option causes the shell tvsdhe command with embeddedwimes instead of semicolons. See the
description of theshopt builtin below underSHELL BUILTIN COMMANDS for information on setting and
unsetting shell options.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the hispamyséon incsh. This section
describes what syntax features available. Thisfeature is enabled by default for intergetshells, and
can be disabled using theH option to theset builtin command (seeSHELL BUILTIN COMMANDS
belov). Non-interactre shells do not perform history expansion by default.

History expansions introduceonds from the history list into the input stream, making it easy to repeat
commands, insert the arguments to aipies command into the current input line, or fix errors ivipres
commands quickly.

History expansion is performed immediately after a complete line is read, before the shell breaks it into
words. Ittakes place in tw parts. Thefirst is to determine which line from the history list to use during
substitution. Thesecond is to select portions of that line for inclusion into the current one. The line
selected from the history is tleeent and the portions of that line that are acted uponwamgls Various
modifiersare aailable to manipulate the selectednds. Thdine is broken into words in the sansshion

as when reading input, so thavaal metacharacteiseparated words surrounded by quotes are considered
one word. Historyexpansions are introduced by the appearance of the histpangion charactewhich

is | by defult. Onlybackslash\) and single quotes can quote the history expansion character.

Several characters inhibit history expansion if found immediately following the history expansion character
evan if it is unquoted: space, tab, newline, carriage return,=antf the extglob shell option is enabled,
will also inhibit expansion.

Several shell options settable with tlsaopt builtin may be used to tailor the behavior of histoxpansion.

If the histverify shell option is enabled (see the description ofsthept builtin), and readline is being
used, history substitutions are not immediately passed to the shell. paxstead, the expanded line is
reloaded into theaeadline editing huffer for further modification.If readline is being used, and the
histreedit shell option is enabled, a failed history substitution will be reloaded intcetit#ine editing
buffer for correction.The —p option to thehistory builtin command may be used to see what a history
expansion will do before using ifThe —s option to thehistory builtin may be used to add commands to the
end of the history list without actuallxecuting them, so that there available for subsequent recall.

The shell allows control of the various characters used by the history expansion mechanism (see the
description ohistchars above inderShell Variables.

Event Designators
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when foka by ablank, newline, carriage return, = or (
(when theextglob shell option is enabled using thleopt builtin).

In Refer to command line.

I-n Refer to the current command line mimus

Il Refer to the previous command. This is a synonym for ‘1-1".

GNU Bash-3.0 2004 June 26 42

BASH(1) BASH(1)

Istring Refer to the most recent command starting witing.

I?string[?]
Refer to the most recent command contairstrqng. The trailing? may be omitted ifstring is
followed immediately by a newline.

~stringlnstring2~
Quick substitution. Repeat the last command, replacisigingl with string2 Equivalent to
“:g/stringd/string2”’ (seeModifiers below).

I# The entire command line typed so far.

Word Designators
Word designators are used to select desirets/from the eent. A : separates thevent specification
from the vord designator It may be omitted if the word designator begins with & *, —, or %. Words
are numbered from the beginning of the line, with the fistdwbeing denoted by 0 (zeroyords are
inserted into the current line separated by single spaces.

0 (zero)
The zeroth wrd. For the shell, this is the command word.

n Thenth word.

h The first agument. Thaits, word 1.

$ The last argument.

% The word matched by the most recerstihg?’ search.

X=y A range of words; 'y abbreviates ‘0y'.

* All of the words but the zerothThis is a synonym forl-$'. It is not an error to ustif there is
just one word in thevent; the empty string is returned in that case.

X* Abbreviatesc-$.

X— Abbreviatesx-$ like x*, but omits the last word.

If a word designator is supplied without aremt specification, the previous command is used asvér.e

Modifiers
After the optional word designatdhere may appear a sequence of one or more of the following modifiers,
each preceded by a "'

Remae a tailing file name component, leaving only the head.

Remae dl leading file name components, leaving the tail.

Remae a tailing suffix of the formxxx leaving the basename.

Remae dl but the trailing suffix.

Print the nev command but do notxecute it.

Quote the substituted words, escaping further substitutions.

Quote the substituted words as wathout break into words dilanks and newlines.

slold/new
Substitutenewfor the first occurrence afld in the eent line. Any delimiter can be used in place
of /. The final delimiter is optional if it is the last character of thentline. The delimiter may
be quoted irold and newwith a single backslash. If & appearsriaw, it is replaced byold. A
single backslash will quote the &f old is null, it is set to the lastld substituted, grif no previ-
ous history substitutions took place, the Esingin a!?string[?] search.

& Repeat the previous substitution.

g Cause changes to be appliegrahe entire gent line. This is used in conjunction withs' (e.g.,

‘:gsloldinew’) or “:&’. If used with s, any delimiter can be used in place of /, and the final

delimiter is optional if it is the last character of tivere line. An a may be used as a synonym for

XQooT O™

G Apply the following 'S modifier once to each word in theeat line.

SHELL BUILTIN COMMANDS
Unless otherwise noted, each builtin command documented in this section as accepting options preceded by
— accepts-— to signify the end of the options.

GNU Bash-3.0 2004 June 26 43

BASH(1) BASH(1)

: [argument}
No effect; the command does nothing beyorpla@dingargumentsand performing anspecified
redirections. Azero exit code is returned.

. filenamegargument§

sourcefilenameargumenty
Read andecute commands fronfilenamein the current shell environment and return tki¢ e
status of the last commanaeeuted fromfilename If filenamedoes not contain a slash, file
names iNPATH are used to find the directory containfiigname The file searched for iRATH
need not be>ecutable. Wherbashis not inposix modethe current directory is searched if no
file is found INPATH. If the sourcepath option to theshopt builtin command is turned &fthe
PATH is not searched. If grargumentsare supplied, thebecome the positional parameters when
filenameis executed. Otherwis¢he positional parameters are unchangglde return status is the
status of the last command exited within the script (0 if no commandsematexl), anddlse if
filenameis not found or cannot be read.

alias[-p] [namég=valuq ...]
Alias with no arguments or with thep option prints the list of aliases in the foralias
namesvalueon standard output. When arguments are supplied, an alias is defined foae®ch
whosevalueis given. A trailing space invaluecauses the next word to be checked for alias sub-
stitution when the alias isxpanded. Br eachhamein the argument list for which neaalueis sup-
plied, the name andalue of the alias is printedAlias returns true unless @ameis given for
which no alias has been defined.

bg [jobspet
Resume the suspended jobspedn the background, as if it had been started &ithIf jobspec
is not present, the shallhotion of thecurrent jobis used.bg jobspecreturns 0 unless run when
job control is disabled pwhen run with job control enabled,jdbspecwas ot found or started
without job control.

bind [-m keymag [-IpsvPSV|
bind [-m keymag [—q functiori [-u function [-r keyseq
bind [-m keymapg —f filename
bind [-m keymag —x keysegshell-command
bind [-m keymag keysegfunction—name
bind readline-command
Display currenteadline key and function bindings, bind aely quence to eeadline function or
macro, or set geadline variable. Eachon-option agument is a command as it would appear in
.inputrc, but each binding or command must be passed as a separate argument; e.g., "\C-x\C-r":
re-read-init—file’. Optionsf supplied, hae te following meanings:
—m keymap
Use keymap as the kymap to be affected by the subsequent bindingsceptable
keymap names areemacs, emacs—standr emacs—meta, emacs—ctlx, vi, vi-u&
vi-commangd and vi-insert. vi is equvalent to vi-commang emacsis equvalent to
emacs-—standard
- List the names of afeadline functions.

-p Displayreadline function names and bindings in such a way that the be re-read.

-P List currentreadline function names and bindings.

-V Displayreadline variable names and values in such a way that ¢tha be re-read.

-V List currentreadline variable names and values.

-s Display readline key sequences bound to macros and the stringg ¢hgut in such a
way that the can be re-read.

-S Displayreadline key sequences bound to macros and the stringsdhgput.

—f filename

Read ley bndings fromfilename

GNU Bash-3.0 2004 June 26 44

BASH(1)

BASH(1)

—q function
Query about whichéys invdke the namedunction
—u function
Unbind all leys bound to the namefdinction
-r keyseq
Remaove any arrent binding fokeyseq
—x keyseqshell-command
Causeshell-commando be eiecuted wheneer keyseqis entered.

The return value is 0 unless an unrecognized optioivés gr an eror occurred.

break [n]

Exit from within afor, while, until, or selectloop. If nis specified, break levels. n must be> 1.
If nis greater than the number of enclosing loops, all enclosing loopgitee eThereturn \alue
is 0 unless the shell is noteeuting a loop whelbreak is executed.

builtin shell-builtin [argument}

Execute the specified shell builtin, passingrijumentsand return its it status. This is useful
when defining a function whose name is the same as a siigii,lretaining the functionality of
the builtin within the function.The cd builtin is commonly redefined thisay. The return status
is false ifshell-builtin is not a shell builtin command.

cd [-L|-P] [dir]

Change the current directorydar. The \ariableHOME is the dedultdir. The \ariableCDPATH
defines the search path for the directory contaiding Alternative drectory names ilCDPATH
are separated by a colon (A null directory name irCDPATH is the same as the current direc-
tory, i.e., *.” . If dir begins with a slash (/), theBDPATH is not used. TheP option says to use
the physical directory structure instead of following symbolic links (see alsePtloption to the
setbuiltin command); the-L option forces symbolic links to be foll@d. Anamgument of- is
equivalent to$OLDPWD. If a non-empty directory name froBDPATH is used, or if- is the first
argument, and the directory change is successful, the absolute pathname of werkieg direc-
tory is written to the standard output. The retuatue is true if the directory was successfully

changed; false otherwise.

caller [expr]

Returns the context of wactive sibroutine call (a shell function or a scripieeuted with the or
sourcebuiltins. Without expr, caller displays the line number and source filename of the current
subroutine call. If a non-igative integer is supplied asxpr, caller displays the line numbesub-
routine name, and source file corresponding to that position in the cuxeentien call stack.
This extra information may be used, for example, to print a stack tféecurrent frame is frame

0. Thereturn value is 0 unless the shell is negoaiting a subroutine call @axpr does not corre-
spond to a valid position in the call stack.

command[-pVVv] commandarg ...]

Run commandwith args suppressing the normal shell function lookup. Only builtin commands or
commands found in theATH are eecuted. Ifthe—p option is gven, the search focommandis
performed using a dafilt value forPATH that is guaranteed to find all of the standard utilitiés.
either the-V or —v option is supplied, a description cdmmands printed. The —v option causes

a gngle word indicating the command or file name usedvokiacommandto be displayed; the

-V option produces a more verbose description. I¥er —v option is supplied, the exit status

is 0 if commandwas found, and 1 if not.If neither option is supplied and an error occurred or
commandcannot be found, thexi¢ status is 127. Otherwise, the exit status of ¢cbemmand
builtin is the exit status afommand

compgen[option] [word]

GNU Bash-3.0

Generate possible completion matchesaford according to theptiors, which may be anoption
accepted by theomplete builtin with the exception of-p and-r, and write the matches to the
standard output. When using th& or —C options, the various shell variables set by the pro-
grammable completion facilities, whileailable, will not have wseful values.

2004 June 26 45

BASH(1) BASH(1)

The matches will be generated in the same way as if the programmable completion code had gen-
erated them directly from a completion specification with the same fifagmrdis specified, only
those completions matchimgprd will be displayed.

The return value is true unless awdid option is supplied, or no matches were generated.

complete[—-abcdefgjksuv [0 comp-optioh[-A action] [-G globpal [-W wordlist] [P prefiy [-S suf-

fix]
[-X filterpaf] [-F functior] [-C commaniiname[name .].

complete —pr[name...]
Specify hav arguments to eachameshould be completedf the —p option is supplied, or if no
options are suppliedxisting completion specifications are printed in a way that allows them to be
reused as inputThe-r option remees a @mpletion specification for eactame or, if no names
are supplied, all completion specifications.

The process of applying these completion specifications wived @ompletion is attempted is
described abege wnnderProgrammable Completion

Other options, if specified, @ the following meanings. The arguments to #, -W, and -X
options (and, if necessare —P and-S options) should be quoted to protect them froqpam-
sion before theompletebuiltin is invoked.
—0 comp-option
The comp-optioncontrols seeral aspects of the compspetehavior beyond the simple
generation of completionccomp-optiormay be one of:
bashdefault
Perform the rest of the dmflt bash completions if the compspec generates no
matches.
default Use readlines default filename completion if the compspec generates no
matches.
dirnames
Perform directory name completion if the compspec generates no matches.
filenames
Tell readline that the compspec generates filenames, so it can perfofite-an
name-specific processing @kdding a slash to directory hames or suppress-
ing trailing spaces). Intended to be used with shell functions.
nospace Tell readline not to append a space (the default) to words completed at the end
of the line.
—A action
Theactionmay be one of the following to generate a list of possible completions:
alias Alias names. May also be specified-as
arrayvar
Array variable names.
binding Readlinekey binding names.
builtin Names of shell builtin commands. May also be specifieebas

command

Command names. May also be specified@s
directory

Directory names. May also be specified-ds
disabled

Names of disabled shell builtins.
enabled Names of enabled shell builtins.
export Names of exported shelariables. Mayalso be specified as.
file File names. May also be specified-ds

GNU Bash-3.0 2004 June 26 46

BASH(1) BASH(1)

function
Names of shell functions.
group Group names. May also be specified-gs
helptopic
Help topics as accepted by thelp builtin.
hostname
Hostnames, as taken from the file specified byHth8TFILE shell variable.
job Job names, if job control is agti May also be specified a$.
keyword
Shell reserved ards. Mayalso be specified ak.
running Names of running jobs, if job control is aeti
service Service names. May also be specifiedas
setopt Valid arguments for theo option to thesetbuiltin.
shopt Shell option names as accepted byghept builtin.
signal Signal names.
stopped Names of stopped jobs, if job control is aeti
user User names. May also be specified-as
variable Names of all shellariables. Mayalso be specified as.
-G globpat
The filename xpansion pattermglobpatis expanded to generate the possible comple-
tions.
-W wordlist
The wordlist is split using the characters in tl#&S special variable as delimiters, and
each resultant word isxpanded. Thepossible completions are the members of the
resultant list which match the word being completed.
—C command
commands executed in a subshell environment, and its output is used as the possible
completions.
—F function
The shell functiorfunctionis executed in the current shell dronment. Wherit fin-
ishes, the possible completions are readefrom the value of th€ OMPREPLY array
variable.
=X filterpat
filterpatis a pattern as used for filenameansion. Itis applied to the list of possible
completions generated by the preceding options and arguments, and each completion
matchingfilterpat is remaved from the list. A leading! in filterpat negaes the pattern;
in this case, ancompletion not matchinfjlterpatis remaed.
—P prefix
prefixis added at the ening of each possible completion after all other optiong ha
been applied.
—-Ssufix sufix is appended to each possible completion after all other optivadian applied.

The return value is true unless awdid option is supplied, an option other thap or —r is sup-
plied without anameamgument, an attempt is made to rema @mpletion specification for a
namefor which no specification exists, or an error occurs adding a completion specification.

continue [n]
Resume the next iteration of the enclosfog, while, until, or selectloop. If n is specified,
resume at thath enclosing loop.n must be> 1. If nis greater than the number of enclosing
loops, the last enclosing loop (tHep-level’’ | oop) is resumedThe return value is O unless the
shell is not gecuting a loop whegontinue is executed.

declare[—afFirtx] [-p] [namg=valuq ...]

typeset[—afFirtx] [-p] [namég=valuq ...]
Declare variables and/orvgi them attrilutes. Ifno names ae given then display the values of
variables. The-p option will display the attributes and values of eaelme When-p is used,

GNU Bash-3.0 2004 June 26 47

BASH(1)

BASH(1)

additional options are ignored:he —F option inhibits the display of function definitions; only the

function name and attributes are printed. If éx¢édebugshell option is enabled usirgiopt, the

source file name and line number where the function is defined are displayed asheelk

option implies—f. The following options can be used to restrict output to variables with the speci-

fied attribute or to ge variables attributes:

-a Eachnameis an array variable (séarays above).

—f Use function names only.

=i The variable is treated as an integer; arithmeftatuation (SeARITHMETIC EV ALUA-
TION) is performed when the variable is assigned a value.

-r Make names readonly These names cannot then be assigreldeg by subsequent
assignment statements or unset.

-t Give eachnamethe trace attribute. Traced functions inherit thBEBUG trap from the
calling shell. The trace attribute has no special meaning for variables.

—X Mark names for export to subsequent commands via the environment.

Using ‘+’ instead of ‘~’ turns dfthe attribute instead, with the exception thatmay not be used

to destry an aray variable. Wherused in a function, makes eacamelocal, as with thdocal
command. Ifa variable name is followed byvalue the value of the ariable is set twalue The

return value is O unless arvalid option is encountered, an attempt is made to define a function
using—f foo=bar , an dtempt is made to assign a value to a readoatjable, an attempt is

made to assign a value to an array variable without using the compound assignment syntax (see
Arrays above), one of thenamesds not a valid shell variable name, an attempt is made to tfirn of
readonly status for a readonly variable, an attempt is made to tamagf status for an arrayavi-

able, or an attempt is made to display a hon-existent function-vith

dirs [-clpv] [+ n] [-n]

Without options, displays the list of currently remembered directofies.default display is on a
single line with directory names separated by spaces. Directories are added to the list with the
pushd command; thg@opd command remees entries from the list.
+n Displays thenth entry counting from the left of the list shown 8iys when irvoked

without options, starting with zero.
-n Displays thenth entry counting from the right of the list shown diys when irvoked

without options, starting with zero.

-C Clears the directory stack by deleting all of the entries.

- Produces a longer listing; the default listing format uses a tilde to denote the home direc-
tory.

-p Print the directory stack with one entry per line.

-V Print the directory stack with one entry per line, prefixing each entry with its indiee
stack.

The return wlue is 0 unless anvidid option is supplied on indexes beyond the end of the direc-
tory stack.

disown[-ar] [-h] [jobspec...]

Without options, eaclobspecis remwaed from the table of aate jobs. Ifthe—h option is gven,
eachjobspecis not remwed from the table, but is marked so tIS4GHUP is not sent to the job if
the shell receies aSIGHUP. If no jobspecis present, and neither th@ nor the-r option is sup-
plied, thecurrent jobis used. If no jobspecis supplied, the-a option means to remre a mark

all jobs; the-r option without ajobspecargument restricts operation to running jobs. The return
value is 0 unless gpbspecdoes not specify a valid job.

echo[-neF] [arg ...]

GNU Bash-3.0

Output theargs, separated by spaces, faled by a neline. Thereturn status is afays 0. If —n

is specified, the trailing médine is suppressed. If thee option is gven, interpretation of the fol-
lowing backslash-escaped characters is enaliibd—~E option disables the interpretation of these
escape charactersyem on g/stems where thyeare interpreted by dafilt. Thexpg_echoshell
option may be used to dynamically determine whether oectoiexpands these escape characters

2004 June 26 48

BASH(1) BASH(1)

by dehult. echodoes not interpret— to mean the end of optiongchointerprets the follawing
escape sequences:

\a alert (bell)

\b backspace

\c suppress trailing newline
\e an escape character

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\Onnn the eight-bit character whose value is the octal vatugzero to three octal digits)
\nnn the eight-bit character whose value is the octal vatugone to three octal digits)
\xHH the eight-bit character whose value is the hexadecimal iu@ne or tvo hex dgits)

enable[-adnpq [-f filenamé& [name...]
Enable and disableubtin shell commands. Disabling a builtin allows a disk command which has
the same name as a shell builtin to kecated without specifying a full pathname/ege though
the shell normally searches for builtins before disk commaltidsn is used, eachameis dis-
abled; otherwisenamesare enabled.For example, to use théest binary found via thePATH
instead of the shell builtin version, renable -n test . The—f option means to load thewie
builtin commandnamefrom shared objectilename on g/stems that support dynamic loading.
The —-d option will delete a builtin previously loaded witlh. If no namearguments are gen, or
if the —p option is supplied, a list of shell builtins is printeéd/ith no other option guments, the
list consists of all enabled shelliliins. If —n is supplied, only disableduiitins are printed.If —a
is supplied, the list printed includes allithns, with an indication of whether or not each is
enabled. If-sis supplied, the output is restricted to the POSp¥cialbuiltins. Thereturn \alue
is 0 unless amameis not a shell builtin or there is an error loading w meiltin from a shared
object.

evd [arg ...]
The args ae read and concatenated together into a single command. This command is then read
and eecuted by the shell, and its exit status is returned as the vakwaoflf there are nargs,
or only null argumentsvd returns 0.

exec[—cl] [-a namg [commandargument§
If commands specified, it replaces the shell. Nawgrocess is createdl'he argumentdbecome
the arguments toommand If the—| option is supplied, the shell places a dash at the beginning of
the zeroth ay passed t@ommand This is whatlogin(1) does. The —c option causesommando
be eecuted with an empty ®ironment. If—-a is supplied, the shell passeameas the zeroth
argument to thexecuted commandIlf commandcannot be xecuted for some reason, a non-inter
active dell exits, unless the shell optiexecfailis enabled, in which case it returraldre. An
interactve shell returns &ilure if the file cannot bexecuted. If commandis not specified, an
redirections ta& dfect in the current shell, and the return status is 0. If there is a redirectign error
the return status is 1.

exit [n] Cause the shell to exit with a statusofif n is omitted, the exit status is that of the last command
executed. Atrap onEXIT is executed before the shell terminates.

export [-fn] [namg=word]] ...

export —p
The suppliechamesare marked for automatic export to the environment of subsequeeatiyted
commands. Ithe-f option is gven, thenamesrefer to functions. If nmamesare gven, or if the
—p option is supplied, a list of all names that axpaeted in this shell is printedThe —n option
causes the export property to be restbfrom eachname If a variable name is followed by
=word, the value of the variable is setwmrd. export returns an st status of 0 unless anwvalid

GNU Bash-3.0 2004 June 26 49

BASH(1)

BASH(1)

option is encountered, one of themeds not a valid shell variable name, fris supplied with a
namethat is not a function.

fc [-eenamé[—nlir] [first] [lasi]
fc —s[pat=rep] [cmd

Fix Command. In the first form, a range of commands fffost to last is selected from the his-
tory list. First andlast may be specified as a string (to locate the last command beginning with
that string) or as a number (an irRdato the history list, where a gaive rumber is used as an
offset from the current command numbeif)last is not specified it is set to the current command
for listing (so thafc -1 -10 prints the last 10 commands) andficst otherwise. Iffirst is not
specified it is set to the previous command for editing and —-16 for listing.

The—n option suppresses the command numbers when listihg-r option reverses the order of

the commands. If thel option is gven, the commands are listed on standard out@dherwise,

the editor gren by enameis invoked on a fle containing those commandl. enameis not gven,

the value of thé&=CEDIT variable is used, and the value ®DITOR if FCEDIT is not set. If nei-

ther variable is setyi is used. When editing is complete, the edited commands are echoed and
executed.

In the second forrgommands re-executed after each instancepstis replaced byep. A useful
alias to use with this is='fc —s’ , SO hat typingr c¢ c runs the last command dianing with
cc and typingr re-executes the last command.

If the first form is used, the return value is 0 unless eaichoption is encountered dirst or last
specify history lines out of range. If the option is supplied, the returralue is the value of the
last commandecuted or &ilure if an error occurs with the temporary file of commands. If the
second form is used, the return status is that of the commamxécigesl, unlesemd does not
specify a valid history line, in which caiereturns failure.

fg [jobspet

Resumejobspecin the foreground, and makit the current job If jobspecis not present, the
shell's motion of thecurrent jobis used. The return value is that of the command placed into the
foreground, or failure if run when job control is disabledwanen run with job control enabled, if
jobspecdoes not specify a valid job gobspecspecifies a job that was started without job control.

getoptsoptstring namgargs

GNU Bash-3.0

getoptsis used by shell procedures to parse positional parametptstring contains the option
characters to be recognized,; if a character isi@tbby a colon, the option is expected teehan
argument, which should be separated from it by white sp@be. colon and question mark char
acters may not be used as option characters. Each time itolsedn getopts places the né
option in the shell ariablename initializing nameif it does not gist, and the indeof the net
argument to be processed into tlaiableOPTIND. OPTIND is initialized to 1 each time the shell
or a shell script is woked. Whenan option requires an@rment,getoptsplaces that gument
into the \ariableOPTARG. The shell does not resePTIND automatically; it must be manually
reset between multiple calls getoptswithin the same shell wocation if a nev set of parameters
is to be used.

When the end of options is encountergdfopts exits with a return &lue greater than zero.
OPTIND is set to the indeof the first non-option argument, andmeis set to ?.

getopts normally parses the positional parametenst iy more arguments arevgh in args,
getoptsparses those instead.

getopts can report errors in twways. Ifthe first character abptstringis a colon,silent error

reporting is used.n normal operation diagnostic messages are printed whelidioptions or
missing option arguments are encounterdédhe variableOPTERR is set to 0, no error messages

2004 June 26 50

BASH(1) BASH(1)

will be displayed, een if the first character adptstringis not a colon.

If an invalid option is seengetoptsplaces ? intamameand, if not silent, prints an error message
and unset®PTARG. If getoptsis silent, the option character found is place@RTARG and no
diagnostic message is printed.

If a required argument is not found, agetoptsis not silent, a question mark) is placed in
name OPTARG is unset, and a diagnostic message is priniedetoptsis silent, then a color
is placed imameandOPTARG is set to the option character found.

getoptsreturns true if an option, specified or unspecified, is found. It retaiss if the end of
options is encountered or an error occurs.

hash[-Ir] [-p filenamé[—-dt] [namé
For eachname the full file name of the command is determined by searching the directories in
$PATH and remembered. If thep option is supplied, no path search is performed, fdledame
is used as the full file name of the commaiitie —r option causes the shell to et all remem-
bered locations.The —d option causes the shell to et the remembered location of eadme
If the —t option is supplied, the full pathname to which eaamecorresponds is printed. If multi-
ple nameamguments are supplied witkt, the nameis printed before the hashed full pathname.
The I option causes output to be displayed in a format that may be reused adfimauaigu-
ments are gen, or if only —I is supplied, information about remembered commands is printed.
The return status is true unlessameis not found or an walid option is supplied.

help [-9] [patterr]
Display helpful information aboutuiitin commands.If patternis specifiedhelp gives detailed
help on all commands matchipgttern otherwise help for all theuiltins and shell control struc-
tures is printed.The —s option restricts the information displayed to a short usage synopses.
return status is 0 unless no command matphésrn

history [n]

history —c

history —d offset

history —anrw [filenamé

history —p arg [arg ...]

history —sarg[arg ...]
With no options, display the command history list with line numbers. Lines listed Withage
been modified. An argument of lists only the lash lines. If the shell ariable HISTTIME-
FORMAT is set and not null, it is used as a format stringsfdtimg3) to display the time stamp
associated with each displayed history entg intenening blank is printed between the format-
ted time stamp and the history lin#. filenameis supplied, it is used as the name of the history
file; if not, the value oHISTFILE is used. Options, if supplied, V&te following meanings:

-C Clear the history list by deleting all the entries.

—d offset
Delete the history entry at positioffset

-a Append the‘hew” history lines (history lines entered since thgibaing of the current
bashsession) to the history file.

-n Read the history lines not already read from the history file into the current history list.
These are lines appended to the history file since t@rirg of the currenbash ses-
sion.

-r Read the contents of the history file and use them as the current history.

-w Write the current history to the history filejepwriting the history files contents.

-p Perform history substitution on the foling args and display the result on the standard

output. Doesot store the results in the history li€acharg must be quoted to disable
normal history expansion.

GNU Bash-3.0 2004 June 26 51

BASH(1) BASH(1)

-s Store theargsin the history list as a single entrfhe last command in the history list is
removed before theargsare added.

If the HISTTIMEFORMAT s set, the time stamp information associated with each history entry
is written to the history file. The return value is O unless @aithoption is encountered, an error
occurs while reading or writing the history file, amalid offsetis supplied as an argument-td,

or the history expansion supplied as an argumenp tails.

jobs[-Inprs] [jobspec..]

jobs -xcommand args... |
The first form lists the acte jobs. Theoptions hae te following meanings:
- List process IDs in addition to the normal information.
-p List only the process ID of the jabjrocess group leader.

-n Display information only about jobs thatyeadhanged status since the user was last noti-
fied of their status.

-r Restrict output to running jobs.

-s Restrict output to stopped jobs.

If jobspecis given, output is restricted to information about that jdlme return status is 0 unless
an irvalid option is encountered or arvatid jobspeds supplied.

If the —x option is suppliedjobs replaces an jobspecfound incommandor args with the corre-
sponding process group ID, andeeutescommandoassing ifargs, returning its exit status.

kill [-ssigsped —n sighum| —sigspet[pid | jobspet ...

kill -1 [sigsped ext_statug
Send the signal named bigspeoor signumto the processes named pig or jobspec sigspeds
either a case-insensiéi sgnal name such a&GKILL (with or without theSIG prefix) or a signal
number;signumis a signal numberlf sigspecis not present, theBIGTERM is assumed.An
argument of- lists the signal names. If grarguments are supplied wheth is given, the names
of the signals corresponding to the arguments are listed, and the return statikagXt_status
argument to-l is a number specifying either a signal number or Kiteséatus of a process termi-
nated by a signalkill returns true if at least one signal was successfully serd)ser if an error
occurs or an velid option is encountered.

let arg [arg ...]
Eacharg is an arithmetic xpression to bevaluated (SeARITHMETIC EV ALUATION). If the
lastarg evduates to Olet returns 1; 0 is returned otherwise.

local [option] [namég=valugq ...]
For each argument, a local variable nanmedneis created, and assignedlue Theoptioncan be
ary of the options accepted lmeclare Whenlocal is used within a function, it causes thariv
able nameto have a vsible scope restricted to that function and its childréfith no operands,
local writes a list of local variables to the standard output. It is an error ttocakewhen not
within a function. The return status is 0 unldsgal is used outside a function, arvélid nameis
supplied, omameis a readonly variable.

logout Exit a login shell.

popd [-n] [+n] [-n]
Remaves entries from the directory stackVith no arguments, renaes the top directory from the
stack, and performs ed to the nev top directory Arguments, if supplied, e te folloving

meanings:
+n Remawes the nth entry counting from the left of the list shown diys, sarting with zero.
For example:popd +0 removes the first directorypopd +1 the second.
-n Remaes the nth entry counting from the right of the list st by dirs, starting with
zero. for examplepopd -0 removes the last directorypopd -1 the next to last.
-n Suppresses the normal change of directory when removing directories from the stack, so

that only the stack is manipulated.

GNU Bash-3.0 2004 June 26 52

BASH(1)

BASH(1)

If the popd command is successful,dirs is performed as well, and the return status ip@pd
returns false if an iralid option is encountered, the directory stack is emgtpn-existent direc-
tory stack entry is specified, or the directory change fails.

printf format[argument}

Write the formattecirgumentdo the standard output under the control offtrenat Theformat

is a character string which contains three types of objects: plain characters, which are simply
copied to standard output, character escape sequences, whichvareedand copied to the stan-

dard output, and format specifications, each of which causes printing of the next saeegssi

ment In addition to the standargrintf(1) formats,%b causegprintf to expand backslash escape
sequences in the correspondargument(except that\c terminates output, backslashes'in\",

and\? are not remeed, and octal escapes beginning wilhmay contain up to four digits), and

%q causegrintf to output the correspondiraygumentin a format that can be reused as shell
input.

The formatis reused as necessary to consume all ohtgements If the format requires more
argumentghan are supplied, the extra format specificationsusetgif a zero value or null string,
as appropriate, had been supplied. The return value is zero on success, non-zero on failure.

pushd[-n] [dir]
pushd[-n] [+n] [-n]

Adds a directory to the top of the directory stack, or rotates the stack, makingvtbhepnaf the
stack the current working directoryVith no arguments, exchanges the top tirectories and
returns 0, unless the directory stack is em@yguments, if supplied, va te following mean-
ings:

+n Rotates the stack so that théa directory (counting from the left of the list shown by
dirs, garting with zero) is at the top.

-n Rotates the stack so that thil directory (counting from the right of the list shown by
dirs, garting with zero) is at the top.

-n Suppresses the normal change of directory when adding directories to the stack, so that
only the stack is manipulated.

dir Addsdir to the directory stack at the top, making it thevisarrent working directory.

If the pushd command is successful,dirs is performed as welllf the first form is usedpushd
returns O unless the cd thr fails. With the second formpushd returns O unless the directory
stack is emptya ron-existent directory stack element is specified, or the directory change to the
specified n& current directory fails.

pwd [-LP]

Print the absolute pathname of the current working directdng pathname printed contains no
symbolic links if the-P option is supplied or theo physical option to thesetbuiltin command is
enabled. Ifthe-L option is used, the pathname printed may contain symbolic links. The return
status is 0 unless an error occurs while reading the name of the current directory\@ticn in
option is supplied.

read [—erg] [-u fd] [-t timeou} [-a anamé[—p promp] [-n ncharg [-d delim] [name...]

GNU Bash-3.0

One line is read from the standard input, or from the file descfipgupplied as an argument to
the—u option, and the first word is assigned to the fieshe the second word to the secamaime
and so on, with lefteer words and their intervening separators assigned to thedast If there
are fewer wrds read from the input stream than names, the remaining names are assigned empty
vaues. Thecharacters itFS are used to split the line intoonds. Thebackslash charactey) (may
be used to rem@ any pecial meaning for the next character read and for line continuation.
Options, if supplied, hee the following meanings:
—aaname
The words are assigned to sequential indices of the aadgbleaname garting at 0.
anameis unset before mew vdues are assigned. Othemmearguments are ignored.

2004 June 26 53

BASH(1) BASH(1)

—d delim
The first character afelimis used to terminate the input line, rather than newline.

-e If the standard input is coming from a termirraladline (seeREADLINE above) is used
to obtain the line.

—-n nchars
read returns after readingcharscharacters rather thanaiting for a complete line of
input.

—p prompt

Display prompton standard erromwithout a trailing newline, before attempting to read
ary input. Theprompt is displayed only if input is coming from a terminal.

-r Backslash does not act as an escape charddterbackslash is considered to be part of
the line. In particulgra backslash-newline pair may not be used as a line continuation.

-s Silent mode. If input is coming from a terminal, characters are not echoed.

-t timeout

Causeread to time out and return failure if a complete line of input is not read within
timeoutseconds. Thisption has no effect iiead is not reading input from the terminal
or a pipe.

—-ufd Read input from file descriptor fd.

If no names are supplied, the line read is assigned to the variable REPLY. The return code
is zero, unless end-of-file is encountered, read times out, or an invalid file descriptor is
supplied as the argument to —u.

readonly [-apf] [name[=word] ...]

The given names are marked readonly; the values of these names may not be changed by
subsequent assignment. If the —f option is supplied, the functions corresponding to the
names are so marked. The —a option restricts the variables to arrays. If no name argu-
ments are given, or if the —p option is supplied, a list of all readonly names is printed.
The —p option causes output to be displayed in a format that may be reused as input. If a
variable name is followed by =word, the value of the variable is set to word. The return
status is 0 unless an invalid option is encountered, one of the names is not a valid shell
variable name, or —f is supplied with a name that is not a function.

return [n]

Causes a function to exit with the return value specified by n. If n is omitted, the return
status is that of the last command executed in the function body. If used outside a func-
tion, but during execution of a script by the . (source) command, it causes the shell to
stop executing that script and return either 7 or the exit status of the last command exe-
cuted within the script as the exit status of the script. If used outside a function and not
during execution of a script by ., the return status is false. Any command associated with
the RETURN trap is executed before execution resumes after the function or script.

set [-—abefhkmnptuvxBCHP] [-o option] [arg ...]
Without options, the name and value of each shell variable are displayed in a format that
can be reused as input. The output is sorted according to the current locale. When
options are specified, they set or unset shell attributes. Any arguments remaining after
the options are processed are treated as values for the positional parameters and are
assigned, in order, to $1, $2, ... $n. Options, if specified, have the following meanings:

-a Automatically mark variables and functions which are modified or created for
export to the environment of subsequent commands.

-b Report the status of terminated background jobs immediately, rather than before
the next primary prompt. This is effective only when job control is enabled.

—-e Exit immediately if a simple command (see SHELL GRAMMAR above) exits with a

non-zero status. The shell does not exit if the command that fails is part of the
command list immediately following a while or until keyword, part of the test
in an if statement, part of a && or [list, or if the command’s return value is
being inverted via !. A trap on ERR, if set, is executed before the shell exits.

GNU Bash-3.0 2004 June 26 54

BASH(1)

GNU Bash-3.0

—f
-h

-n

BASH(1)

Disable pathname expansion.

Remember the location of commands as they are looked up for execution. This
is enabled by default.

All arguments in the form of assignment statements are placed in the environ-
ment for a command, not just those that precede the command name.

Monitor mode. Job control is enabled. This option is on by default for interac-
tive shells on systems that support it (see JOB CONTROL above). Background
processes run in a separate process group and a line containing their exit status
is printed upon their completion.

Read commands but do not execute them. This may be used to check a shell
script for syntax errors. This is ignored by interactive shells.

—o option—name

The option—name can be one of the following:

allexport
Same as -a.

braceexpand
Same as -B.

emacs Use an emacs-style command line editing interface. This is enabled by
default when the shell is interactive, unless the shell is started with the
—-noediting option.

errtrace Same as —E.

functrace
Same as -T.

errexit Same as —e.

hashall Same as -h.

histexpand
Same as -H.

history Enable command history, as described above under HISTORY. This
option is on by default in interactive shells.

ignoreeof
The effect is as if the shell command IGNOREEOF=10had been exe-
cuted (see Shell Variables above).

keyword
Same as k.

monitor
Same as —m.

noclobber
Same as -C.

noexec Same as —n.

noglob Same as —f. nolog Currently ignored.

notify Same as -b.

nounset
Same as —u.

onecmd
Same as —t.

physical
Same as -P.

pipefail
If set, the return value of a pipeline is the value of the last (rightmost)
command to exit with a non-zero status, or zero if all commands in the
pipeline exit successfully. This option is disabled by default.

posix Change the behavior of bash where the default operation differs from
the POSIX 1003.2 standard to match the standard (‘posix mode).

2004 June 26 55

BASH(1) BASH(1)

privileged
Same as —p.
verbose
Same as —v.
vi Use a vi-style command line editing interface.
xtrace Same as —x.

If —o is supplied with no option—name, the values of the current options are
printed. If +o is supplied with no option-name, a series of set commands to
recreate the current option settings is displayed on the standard output.

-p Turn on privileged mode. In this mode, the $ENV and $BASH_ENV files are not
processed, shell functions are not inherited from the environment, and the
SHELLOPTS variable, if it appears in the environment, is ignored. If the shell is
started with the effective user (group) id not equal to the real user (group) id,
and the —p option is not supplied, these actions are taken and the effective user
id is set to the real user id. If the —p option is supplied at startup, the effective
user id is not reset. Turning this option off causes the effective user and group
ids to be set to the real user and group ids.

—t Exit after reading and executing one command.

-u Treat unset variables as an error when performing parameter expansion. If
expansion is attempted on an unset variable, the shell prints an error message,
and, if not interactive, exits with a non-zero status.

-V Print shell input lines as they are read.

-X After expanding each simple command, for command, case command, select
command, or arithmetic for command, display the expanded value of PS4, fol-
lowed by the command and its expanded arguments or associated word list.

-B The shell performs brace expansion (see Brace Expansion above). This is on by
default.
-C If set, bash does not overwrite an existing file with the >, >&, and <> redirection

operators. This may be overridden when creating output files by using the redi-
rection operator > | instead of >.

-E If set, any trap on ERR is inherited by shell functions, command substitutions,
and commands executed in a subshell environment. The ERR trap is normally
not inherited in such cases.

-H Enable ! style history substitution. This option is on by default when the shell is
interactive.
-P If set, the shell does not follow symbolic links when executing commands such

as cd that change the current working directory. It uses the physical directory
structure instead. By default, bash follows the logical chain of directories when
performing commands which change the current directory.

-T If set, any trap on DEBUG is inherited by shell functions, command substitu-
tions, and commands executed in a subshell environment. The DEBUG trap is
normally not inherited in such cases.

- If no arguments follow this option, then the positional parameters are unset.
Otherwise, the positional parameters are set to the args, even if some of them
begin with a —.

- Signal the end of options, cause all remaining args to be assigned to the posi-
tional parameters. The —x and —v options are turned off. If there are no args, the
positional parameters remain unchanged.

The options are off by default unless otherwise noted. Using + rather than — causes these
options to be turned off. The options can also be specified as arguments to an invocation
of the shell. The current set of options may be found in $—. The return status is always
true unless an invalid option is encountered.

GNU Bash-3.0 2004 June 26 56

BASH(1)

shift [1]

BASH(1)

The positional parameters from n+1 ... are renamed to $1 Parameters represented by
the numbers $# down to $#-n+1 are unset. n must be a non-negative number less than or
equal to $#. If n is 0, no parameters are changed. If n is not given, it is assumed to be 1.
If n is greater than $#, the positional parameters are not changed. The return status is
greater than zero if n is greater than $# or less than zero; otherwise 0.

shopt [-pqsu] [-o] [optname ...]

GNU Bash-3.0

Toggle the values of variables controlling optional shell behavior. With no options, or
with the —p option, a list of all settable options is displayed, with an indication of
whether or not each is set. The —p option causes output to be displayed in a form that
may be reused as input. Other options have the following meanings:

-s Enable (set) each optname.

-u Disable (unset) each optname.

-q Suppresses normal output (quiet mode); the return status indicates whether the
optname is set or unset. If multiple optname arguments are given with —q, the
return status is zero if all optnames are enabled; non-zero otherwise.

-0 Restricts the values of optname to be those defined for the —o option to the set
builtin.

If either —s or —u is used with no optname arguments, the display is limited to those
options which are set or unset, respectively. Unless otherwise noted, the shopt options
are disabled (unset) by default.

The return status when listing options is zero if all optnames are enabled, non-zero other-
wise. When setting or unsetting options, the return status is zero unless an optname is not
a valid shell option.

The list of shopt options is:

cdable_vars
If set, an argument to the cd builtin command that is not a directory is assumed
to be the name of a variable whose value is the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in a ¢d command
will be corrected. The errors checked for are transposed characters, a missing
character, and one character too many. If a correction is found, the corrected file
name is printed, and the command proceeds. This option is only used by inter-
active shells.

checkhash
If set, bash checks that a command found in the hash table exists before trying
to execute it. If a hashed command no longer exists, a normal path search is per-
formed.

checkwinsize
If set, bash checks the window size after each command and, if necessary,
updates the values of LINES and COLUMNS.

cmdhist
If set, bash attempts to save all lines of a multiple-line command in the same
history entry. This allows easy re-editing of multi-line commands.

dotglob
If set, bash includes filenames beginning with a “.” in the results of pathname
expansion.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as
an argument to the exec builtin command. An interactive shell does not exit if
exec fails.

expand_aliases
If set, aliases are expanded as described above under ALIASES. This option is
enabled by default for interactive shells.

2004 June 26 57

BASH(1)

GNU Bash-3.0

BASH(1)
extdebug

If set, behavior intended for use by debuggers is enabled:

1. The —F option to the declare builtin displays the source file name and
line number corresponding to each function name supplied as an argu-
ment.

2. If the command run by the DEBUG trap returns a non-zero value, the
next command is skipped and not executed.

3. If the command run by the DEBUG trap returns a value of 2, and the

shell is executing in a subroutine (a shell function or a shell script exe-
cuted by the . or source builtins), a call to return is simulated.

extglob If set, the extended pattern matching features described above under Pathname
Expansion are enabled.

extquote
If set, $'string” and $"string" quoting is performed within ${parameter} expansions
enclosed in double quotes. This option is enabled by default.

failglob
If set, patterns which fail to match filenames during pathname expansion result
in an expansion error.

force_fignore
If set, the suffixes specified by the FIGNORE shell variable cause words to be
ignored when performing word completion even if the ignored words are the
only possible completions. See SHELL VARIABLES above for a description of
FIGNORE. This option is enabled by default.

gnu_errfmt
If set, shell error messages are written in the standard GNU error message for-
mat.

histappend
If set, the history list is appended to the file named by the value of the HIST-
FILE variable when the shell exits, rather than overwriting the file.

histreedit
If set, and readline is being used, a user is given the opportunity to re-edit a
failed history substitution.

histverify
If set, and readline is being used, the results of history substitution are not
immediately passed to the shell parser. Instead, the resulting line is loaded into
the readline editing buffer, allowing further modification.

hostcomplete
If set, and readline is being used, bash will attempt to perform hostname com-
pletion when a word containing a @ is being completed (see Completing under
READLINE above). This is enabled by default.

huponexit
If set, bash will send SIGHUP to all jobs when an interactive login shell exits.

interactive_comments
If set, allow a word beginning with # to cause that word and all remaining char-
acters on that line to be ignored in an interactive shell (see COMMENTS above).
This option is enabled by default.

lithist If set, and the cmdhist option is enabled, multi-line commands are saved to the
history with embedded newlines rather than using semicolon separators where
possible.

login_shell
The shell sets this option if it is started as a login shell (see INVOCATION
above). The value may not be changed.

2004 June 26 58

BASH(1) BASH(1)

mailwarn
If set, and a file that bash is checking for mail has been accessed since the last
time it was checked, the message “The mail in mailfile has been read” is dis-
played.
no_empty_cmd_completion
If set, and readline is being used, bash will not attempt to search the PATH for
possible completions when completion is attempted on an empty line.
nocaseglob
If set, bash matches filenames in a case—insensitive fashion when performing
pathname expansion (see Pathname Expansion above).
nullglob
If set, bash allows patterns which match no files (see Pathname Expansion
above) to expand to a null string, rather than themselves.
progcomp
If set, the programmable completion facilities (see Programmable Completion
above) are enabled. This option is enabled by default.
promptvars
If set, prompt strings undergo parameter expansion, command substitution,
arithmetic expansion, and quote removal after being expanded as described in
PROMPTING above. This option is enabled by default.
restricted_shell
The shell sets this option if it is started in restricted mode (see RESTRICTED
SHELL below). The value may not be changed. This is not reset when the
startup files are executed, allowing the startup files to discover whether or not a
shell is restricted.
shift_verbose
If set, the shift builtin prints an error message when the shift count exceeds the
number of positional parameters.
sourcepath
If set, the source (.) builtin uses the value of PATH to find the directory contain-
ing the file supplied as an argument. This option is enabled by default.
xpg_echo
If set, the echo builtin expands backslash-escape sequences by default.
suspend [—f]
Suspend the execution of this shell until it receives a SIGCONT signal. The —f option says
not to complain if this is a login shell; just suspend anyway. The return status is 0 unless
the shell is a login shell and —f is not supplied, or if job control is not enabled.
test expr
[expr] Return a status of 0 or 1 depending on the evaluation of the conditional expression expr.
Each operator and operand must be a separate argument. Expressions are composed of
the primaries described above under CONDITIONAL EXPRESSIONS.

Expressions may be combined using the following operators, listed in decreasing order of
precedence.
Yexpr True if expr is false.
(expr) Returns the value of expr. This may be used to override the normal precedence
of operators.
exprl —a expr2
True if both exprl and expr2 are true.
exprl —o expr2
True if either expr1 or expr2 is true.

test and [evaluate conditional expressions using a set of rules based on the number of
arguments.

GNU Bash-3.0 2004 June 26 59

BASH(1)

times

BASH(1)

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is !, the expression is true if and only if the second argument
is null. If the first argument is one of the unary conditional operators listed
above under CONDITIONAL EXPRESSIONS, the expression is true if the unary
test is true. If the first argument is not a valid unary conditional operator, the
expression is false.

3 arguments
If the second argument is one of the binary conditional operators listed above
under CONDITIONAL EXPRESSIONS, the result of the expression is the result of
the binary test using the first and third arguments as operands. If the first argu-
ment is !, the value is the negation of the two-argument test using the second and
third arguments. If the first argument is exactly (and the third argument is
exactly), the result is the one-argument test of the second argument. Otherwise,
the expression is false. The —a and —o operators are considered binary operators
in this case.

4 arguments
If the first argument is !, the result is the negation of the three-argument expres-
sion composed of the remaining arguments. Otherwise, the expression is parsed
and evaluated according to precedence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules
listed above.

Print the accumulated user and system times for the shell and for processes run from the
shell. The return status is 0.

trap [-1p] [[arg] sigspec ...]

GNU Bash-3.0

The command arg is to be read and executed when the shell receives signal(s) sigspec. If
arg is absent (and there is a single sigspec) or —, each specified signal is reset to its original
disposition (the value it had upon entrance to the shell). If arg is the null string the signal
specified by each sigspec is ignored by the shell and by the commands it invokes. If arg is
not present and —p has been supplied, then the trap commands associated with each
sigspec are displayed. If no arguments are supplied or if only —p is given, trap prints the
list of commands associated with each signal. The -1 option causes the shell to print a list
of signal names and their corresponding numbers. Each sigspec is either a signal name
defined in <signal.h>, or a signal number. Signal names are case insensitive and the SIG
prefix is optional. If a sigspec is EXIT (0) the command arg is executed on exit from the
shell. If a sigspec is DEBUG, the command arg is executed before every simple command,
for command, case command, select command, every arithmetic for command, and before
the first command executes in a shell function (see SHELL GRAMMAR above). Refer to
the description of the extglob option to the shopt builtin for details of its effect on the
DEBUG trap. If a sigspec is ERR, the command arg is executed whenever a simple com-
mand has a non-zero exit status, subject to the following conditions. The ERR trap is not
executed if the failed command is part of the command list immediately following a
while or until keyword, part of the test in an if statement, part of a && or I list, or if the
command’s return value is being inverted via !. These are the same conditions obeyed by
the errexit option. If a sigspec is RETURN, the command arg is executed each time a shell
function or a script executed with the . or source builtins finishes executing. Signals
ignored upon entry to the shell cannot be trapped or reset. Trapped signals are reset to
their original values in a child process when it is created. The return status is false if any
sigspec is invalid; otherwise trap returns true.

2004 June 26 60

BASH(1)

BASH(1)

type [—aftpP] name [name ...]

With no options, indicate how each name would be interpreted if used as a command
name. If the —t option is used, type prints a string which is one of alias, keyword, function,
builtin, or file if name is an alias, shell reserved word, function, builtin, or disk file, respec-
tively. If the name is not found, then nothing is printed, and an exit status of false is
returned. If the —p option is used, type either returns the name of the disk file that would
be executed if name were specified as a command name, or nothing if type -t name
would not return file. The —P option forces a PATH search for each name, even if type -t
name would not return file. If a command is hashed, —p and -P print the hashed value,
not necessarily the file that appears first in PATH. If the —a option is used, type prints all
of the places that contain an executable named name. This includes aliases and functions,
if and only if the —p option is not also used. The table of hashed commands is not con-
sulted when using —a. The —f option suppresses shell function lookup, as with the com-
mand builtin. type returns true if any of the arguments are found, false if none are
found.

ulimit [-SHacdflmnpstuv [limit]]

Provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. The —H and -S options specify that the hard or soft
limit is set for the given resource. A hard limit cannot be increased once it is set; a soft
limit may be increased up to the value of the hard limit. If neither —H nor -S is specified,
both the soft and hard limits are set. The value of limit can be a number in the unit speci-
fied for the resource or one of the special values hard, soft, or unlimited, which stand for
the current hard limit, the current soft limit, and no limit, respectively. If limit is omitted,
the current value of the soft limit of the resource is printed, unless the —H option is given.
When more than one resource is specified, the limit name and unit are printed before the
value. Other options are interpreted as follows:

-a All current limits are reported

—c The maximum size of core files created

-d The maximum size of a process’s data segment

—f The maximum size of files created by the shell

-1 The maximum size that may be locked into memory

-m The maximum resident set size

-n The maximum number of open file descriptors (most systems do not allow this

value to be set)
-p The pipe size in 512-byte blocks (this may not be set)

-s The maximum stack size

—t The maximum amount of cpu time in seconds

-u The maximum number of processes available to a single user
-V The maximum amount of virtual memory available to the shell

If limit is given, it is the new value of the specified resource (the —a option is display
only). If no option is given, then —f is assumed. Values are in 1024-byte increments,
except for —t, which is in seconds, —p, which is in units of 512-byte blocks, and —n and
—u, which are unscaled values. The return status is 0 unless an invalid option or argu-
ment is supplied, or an error occurs while setting a new limit.

umask [-p] [-S] [mode]

GNU Bash-3.0

The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted as
an octal number; otherwise it is interpreted as a symbolic mode mask similar to that
accepted by chmod(1). If mode is omitted, the current value of the mask is printed. The
—S option causes the mask to be printed in symbolic form; the default output is an octal
number. If the —p option is supplied, and mode is omitted, the output is in a form that
may be reused as input. The return status is 0 if the mode was successfully changed or if
no mode argument was supplied, and false otherwise.

2004 June 26 61

BASH(1)

BASH(1)

unalias [—a] [name ...]

Remove each name from the list of defined aliases. If —a is supplied, all alias definitions
are removed. The return value is true unless a supplied name is not a defined alias.

unset [—-fv] [name ...]

wait [n]

For each name, remove the corresponding variable or function. If no options are sup-
plied, or the —v option is given, each name refers to a shell variable. Read-only variables
may not be unset. If —f is specifed, each name refers to a shell function, and the function
definition is removed. Each unset variable or function is removed from the environment
passed to subsequent commands. If any of RANDOM, SECONDS, LINENO, HISTCMD,
FUNCNAME, GROUPS, or DIRSTACK are unset, they lose their special properties, even if
they are subsequently reset. The exit status is true unless a name is readonly.

Wait for the specified process and return its termination status. n may be a process ID or
a job specification; if a job spec is given, all processes in that job’s pipeline are waited for.
If n is not given, all currently active child processes are waited for, and the return status is
zero. If n specifies a non-existent process or job, the return status is 127. Otherwise, the
return status is the exit status of the last process or job waited for.

RESTRICTED SHELL
If bash is started with the name rbash, or the —r option is supplied at invocation, the shell
becomes restricted. A restricted shell is used to set up an environment more controlled than the
standard shell. It behaves identically to bash with the exception that the following are disal-
lowed or not performed:

changing directories with cd

setting or unsetting the values of SHELL, PATH, ENV, or BASH_ENV
specifying command names containing /

specifying a file name containing a / as an argument to the . builtin command

Specifying a filename containing a slash as an argument to the —p option to the hash
builtin command

importing function definitions from the shell environment at startup
parsing the value of SHELLOPTS from the shell environment at startup
redirecting output using the >, > 1, <>, >&, &>, and >> redirection operators
using the exec builtin command to replace the shell with another command

adding or deleting builtin commands with the —f and —d options to the enable builtin
command

Using the enable builtin command to enable disabled shell builtins
specifying the —p option to the command builtin command

turning off restricted mode with set +r or set +o restricted.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see COMMAND EXECUTION
above), rbash turns off any restrictions in the shell spawned to execute the script.

SEE ALSO

Bash Reference Manual, Brian Fox and Chet Ramey

The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE

GNU Bash-3.0

2004 June 26 62

BASH(1) BASH(1)

sh(1), ksh(1), csh(1)
emacs(1), vi(1)
readline(3)

FILES

/bin/bash

The bash executable
/fetc/profile

The systemwide initialization file, executed for login shells
*/.bash_profile

The personal initialization file, executed for login shells
~/.bashrc

The individual per-interactive-shell startup file
“/.bash_logout

The individual login shell cleanup file, executed when a login shell exits
“/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet@po.CWRU.Edu

BUG REPORTS
If you find a bug in bash, you should report it. But first, you should make sure that it really is a
bug, and that it appears in the latest version of bash. The latest version is always available from
ftp://ftp.gnu.org/pub/bash/.

Once you have determined that a bug actually exists, use the bashbug command to submit a bug
report. If you have a fix, you are encouraged to mail that as well! Suggestions and “philosophi-
cal’ bug reports may be mailed to bug-bash@gnu.org or posted to the Usenet newsgroup
gnu.bash.bug.

ALL bug reports should include:

The version number of bash

The hardware and operating system

The compiler used to compile

A description of the bug behaviour

A short script or ‘recipe’ which exercises the bug

bashbug inserts the first three items automatically into the template it provides for filing a bug
report.

Comments and bug reports concerning this manual page should be directed to
chet@po.CWRU.Edu.

BUGS
It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of
the POSIX specification.

Aliases are confusing in some uses.
Shell builtin commands and functions are not stoppable/restartable.

Compound commands and command sequences of the form ‘a ; b ; ¢ are not handled gracefully
when process suspension is attempted. When a process is stopped, the shell immediately exe-
cutes the next command in the sequence. It suffices to place the sequence of commands between
parentheses to force it into a subshell, which may be stopped as a unit.

GNU Bash-3.0 2004 June 26 63

BASH(1) BASH(1)

Commands inside of $(...) command substitution are not parsed until substitution is attempted.
This will delay error reporting until some time after the command is entered. For example,
unmatched parentheses, even inside shell comments, will result in error messages while the con-
struct is being read.

Array variables may not (yet) be exported.

GNU Bash-3.0 2004 June 26 64

