SDL Library Documentation

SDL Library Documentation
Published v1.2.0, April 2001

"Simple, efficient, and portable"

Table of Contents

1B I UL [OOSR i
] (ol SO SORSTPR PRSI i
ADOUL SDIL ... e ettt bttt et en bt e s i
ADOUL SDLUOC ...ttt ettt ettt bttt sttt ettt ene b sbe e s i

L0 =T 11 TSSO i

I I T 2 ot OSSOSO PSPPSRSO 2
INEFOAUCTION L.ttt ettt ettt et nbe e 2
AT AT 1o 1S L R 2

A 1= ol a1 oty UaTo ANV o [T o ST 1
INtrOdUCHION t0 SDL VIUBOovvveiiieetiisieiesieie sttt 1
Initializing the Video DiSPlayccceviiiiisie i 1

Initializing the Best Video MOGEccccoveiiiieiice e 1

Loading and Displaying @ BMP Filecccccovviiiiniiiiecne s 2

Drawing Directly t0 the DiSPlayccccivevierieieeieiisiseese s 3

USING OPENGL WIth SDLvcviiieiiiiiie ettt ne e ene e 5
INTETAHSALION ...ttt e e ens 5

[11T o SR 7

TR 10T o101 1 =V o | 11T TSR 17
HANAIING JOYSTICKS.......cveviiitiisie ettt 17
INTHATIZALION ... 17

QUETYING .ttt bbb bbbt 17

Opening a Joystick and Receiving JOystiCk EVENLScoccoevriiinneiinciineeines 18

Advanced JOYSEICK FUNCLIONS..........ccuiiiiirieiieiisieie s 20

Handling the KEYDOAIT..........cooiiiiiiiiic s 22
Keyboard Related SIIUCTUIESc.ouiiieiiieiiieeeee e 22

SDLKEBY ..ttt sttt ettt be e tara b re e 22

SDLMOG ... ittt sttt se bt se ettt se et a et re e 22

SDL_KEBYSYIM ottt 22
SDL_KeYDOArAEVENT ...ttt 23

Reading Keyboard EVENTS..........ccuiiiiiiieecs e 23

A MOre Detailed LOOK.........cooiriiiieiecse et 24
GaME-TYPE INPUL ...t e 27
141 0] TS 31
INEFOAUCTION L.ttt ettt be e 31

o L=To N TG T 1] o] =TSP 31
Initializing the Video diSPlay.........cccoveiiiiiiie e 31

Initializing the best VIdeo MOdE..........cccceieici i 31

Loading and displaying a BMP file ... 32

Drawing directly to the diSplay..........cccceiveieiinciieii e 33

Fastest possible surface blit ..o 34

EVENE EXAMPIES ...ttt st ettt se e e e sne e 36
Filtering and Handling EVENESccccooviveiiiicicie e 36

F N (o Lol T U] o] [T 38
Opening the AUAIO GBVICE........ccvvevie et 39

o PNV T T LU o T RSP TRS 39
CDROM EXAMPIES ...ttt sttt sttt bbb 40
LiSting CD-ROM AFIVES........cviuiiieeiiieiiiiieiiieie et 40
Opening the default driVe.........cooiiiiiee e e 41
Listing the tracks 0N @ CDoveiiiieieeee st 41

Play @n eNtIre CDccoouiiiieieiese ettt e 42

THME EXAMPIES ..ottt et sttt sttt be et st nnenes 42
Time Dased game 100Dcvieeiieieiie e e 42

1. SDL REFEIEINCE ...viiee ettt et sttt sttt et s et e e e eneene s 44
T LT a1 RS RPTTSPR 45
ST I [RSSO 45
SDL_INIESUDSYSIEM ...ttt bbbt e 47
SDL_QUItSUDSYSIEM ..ttt ettt b et eeas 49
SDL_QUIT 1ttt ettt b e 50
SDL WaSINIE ottt sttt ettt r et e r e e nrere e 51
STV To [T TSRS 53
SDL_GEtVIABOSUITACEc.vcveeveieice ettt se e e ne e 53
ST] I Tt AV To =T [) (o OSSR 55
SDL_VideODIIVEINGMEcuvcviiiiiiieeisie et eete st se et re e s ene e bt e sne e naeneens 56
SDL_LISEMOUEScvvveveieeeictistes ettt sttt b et te st b ena e e teaeneenennenes 57
ST] IV o [=To 1 oo =T] TS 59
ST] I T= AT [=T0] 1Y, o o [T TSP 61
SDL_UPUAERECT.......eveieeeiiticie ettt ettt st ne e nnenes 63
SDL_UPUAERECESveuveeceecieste ettt ettt sttt e st e e sa e enenes 64
SO FID ettt bt b et 65
S]] S T=1 (O] o] £ TSRS 66
SDL_SELPAIELLE.c.eivive ettt re s 68
SDL_ SEEGAMIMIA. ...ttt sttt ettt ettt re e bbb e e bt e bt eebe e e sbe st e esbenbesbeaneas 70
SDL_GetGammMaRAMP.......cviririiiiieiinrire sttt 71
SDL_SetGammaRAMcviiiiiirieiiriie e s 72
SDL_MAPRGB ..ottt ettt b e 73
SDL_MAPRGBAooi ettt sttt e bbbttt 74
SDL_GERGB.....c.eciiiiictiiciei ettt et ettt et r e 75
SDL_GEIRGBA ..ottt sttt bttt sttt 76
SDL_CreateRGBSUITACE.......ccoiiiirieiiierie et e e s 77
SDL_CreateRGBSUIMACEFTOMcoviiiiiie ettt s 79
SDL_FrEESUITACEvete ettt ettt ettt b et se e e ene e 80
SDL_LOCKSUITACE ...ttt ettt sttt st s sne s 81
SDL_UNIOCKSUITACE ... civeniitietteieie ettt e 83

SDL_LOAUABIMP ..ottt 84

SDL_SAVEBMP ...ttt b bbb e 85
S]] IS T=1 (O] [o] ()Y 2SS 86
SDL_SELAIPNA. ...t e e re s 87
ST S T=1 (O 1T o =T TS 90
ST I T (O 1 o] T TSRS 91
SDL_ CONVEITSUITACEeeuiitietiitee ettt sttt st s ene e 92
SDL_BIIESUITACE ...ttt st bttt s nne s 93
SDL_FIIIRECE. ...ttt ettt b e n e 95
SDL_DiSPIaYFOIMaL.......c.viveiiieiiiiieiisieiee ittt et 96
SDL_DisplayFormatAIPNa.........cooeiiiiiieeiicee e 97
SDL_WEIPIMOUSE ..ottt st 98
SDL_CrEAIECUISON ...ttt ettt ettt sttt be e st s et e e bbbt e seesbe s b e e sb et e sbeeneas 99
SDL_FIBECUISON ...ttt ettt sttt ettt bbb bt bt b e shesbe e me e e e beebe e e e e 102
SDL_ SEECUISON ...ttt ettt ettt bbbt be ettt eb e et e bt sbe et eseesbe e se e e e besbeeneenes 103
B I €1 (01 1] ¢<To] PO RURRPRPROP 104
SDL_SNOWECUISOE ... ettt ettt be et sttt eaesbe e ebesbesbene e e sbe st seeneenens 105
SDL_GL_LOAULIBIAIY ..ttt s 106
SDL_GL_GEtPrOCAUAIESSeteeereeiietisie ettt sttt st seesaeneas 107
SDL_GL_GEtALIIDULE ...ttt et s 109
SDL_GL_SEtAIIDULEcviireeieceeee e e 110
SDL_GL_SWapBUTTEIS ...t 112
SDL_Create YUVOVEIAYccocvivireeiitiie e ieeeseseree et se e te e esteaesae e snenaenens 113
SDL_LOCKYUWVOVETIAYcoveviiiiiieeiitisie ettt se ettt snenaenens 114
SDL_UNIOCKYUWVOVEIIAYcooiviviieeiisiisie ettt e s s snesaenens 115
SDL_DisplayYUVOVEFIAYccuereeiiiiieieiece e ese et sne s 116
SDL_FreeYUWVOVEIIAYceeiiiiiiieeiitisesteeee et ie st se e te e saena e steeesaenesnesnennenens 117
ST] I] I 1 1 OO STPRTPPPP 118
SDL_RECT ..ttt bbbt n bbb en s 119
(ST 0] I o] Lo ST SR 120
SDL_PAlBI ... ecee ettt r et e e rene s 121
SDL_PiIXEIFOIMAL......ccuiiiiiceieieieie et ne et e e s r e e et sneneenens 122
IS S [- To - S 126
ST] IV o (=T o [) (o TSR URSRRN 128
SDL_OVEIIAY ...ttt 130
7. WINAOW MANAGEIMENTcuiiiiiiitiiiieetieeie ettt b et sn bbb snens 132
SDL_WM_SELCAPLION ..ottt sttt st sne s 132
SDL_WM_GEICAPIION ...ttt et st beneas 133
SDL_WM_SELICON ...ttt ettt bbbt 134
SDL_WM_ICONTTYWINAOWc.cviiiiiiiiiiie et 135
SDL_WM_TOQQIEFUIISCIEEN ...ttt 136
SDL_WM_GIabINPUL......coiuieiiiiereeisicse et nenea 137
B EVBINTS ...ttt b et b e bttt benae et aas 138
INEFOTUCTION ... ettt b et se e s ene e e 138

SDL EVENE SIIUCTUIES. ...t 138
DL EVENT ...ttt 138
SDL_ACHVEEVENT ..ottt sttt sne s 142
SDL_KeYDOArAEVENTcocviieiieiie sttt 144
SDL_MOUSEMOLIONEVENLc.ciivirceisieeese e 145
SDL_MOUSEBULIONEVENT........eiiiiiiiiiieiienieeie st 147
SDL_JOYAXISEVENT......ccuiiiiiiiictiiriecet et 149
SDL_JOYBULIONEVENT ..o s 150
SDL_JOYHEIEVENT ...ttt s 151
SDL_JOYBAIIEVENTccviiiiiicetirieiet et 153
SDL_RESIZEEVENT ...ttt 154
SDL_SYSWMENVENL.......coiiiiiiiiieirt it 155
SDL_USEIEVENT ..ottt bt 156
SDL_QUITEVENT......oiiiiiiiee ettt sttt st 158
SDL_KEYSYM ...ttt 159
SDLIKEY ..ttt bbb et 161

EVENE FUNCLIONS. ...ttt ettt st b ettt sb e nns 166
SDL_PUMPEVENTS ..ottt 166
SDL_PEEPEVENTS ...ttt s 167
SDL_POHEVENT ...ttt 168
SDL_WAITEVENT ..ot 170
SDL_PUSNEVENToeiiiricriiieiise s 171
SDL_SEtEVENIFIIET ...c.veice e e 172
SDL_GEtEVENTFIIENvovvce et 174
SDL_EVENESIALE......cciiciie i 175
SDL_GEIKEYSIALE. ... eeeiiiiiii ittt b b s 176
SDL_GEIMOUSTALE.....c.veueeeceiie ettt et n e see s 177
SDL_SEtMOUSEALEcveveeeciiie et et nen 179
SDL_GEtKEYNEAMEviiiiiiiiit it 180
SDL_ENGBIEUNICODE ..ot 181
SDL_ENabIEKEYREPEALccveiveiiiecresieiete sttt en 182
SDL_GEIMOUSESTALE ...c.vviiviiciiisiee ettt 183
SDL_GetRelativVeMOUSESTALEcvcvveeieieiecesiesreis e 184
SDL_GELAPPSLALEvveeveiitie ittt 185
SDL_JOYStICKEVENTSTALE........cvieiiiiiieecriieresie st 186

0. JOYSTICK ..ttt bbbt eb et er e e 187

SDL_NUMJOYSHICKS ...tttk 187

SDL_JOYSHCKNAME ...ttt bbb 189

SDL_JOYSHCKOPENciiniitiiiiei ettt bbb 190

SDL_JOYSHCKOPENEMc.oviiiiiiiieiiieiee ettt 192

SDL_JOYSHCKINAEX ...ttt 193

SDL_JOYSHCKNUMAXES ..ottt 194

SDL_JOYSHCKNUMBALISc.oviiiiiiiiciciiceee e 195

SDL_JOYSHCKNUMHALS ..ottt e 196

SDL_JOYStICKNUMBUIONSoeviiiieciciise et sne s 197

SDL_JOYStICKUPAALE ...ttt neneas 198
SDL_JOYSHICKGELAXIS cv.veuvevretiieiese et st ettt et sa et bt snenenens 199
SDL_JOYStICKGEIHALc.ocviceciccecesc e s aenea 201
SDL_JOYStICKGEIBULION........ciiiiiieecicii ettt 202
SDL_JOYStICKGEIBAILc.ocvveieiiicecesc e e e 203
SDL_JOYSHCKCIOSE ...ttt bbb 205
0T U o T T TSR 206
SDL_AUGIOSPEC ...ttt eb e 206
SDL_OPENAUTIO ..ottt bbbt bbb 210
SDL_PAUSEAUTIOeuviieeiitieieiet ettt st sttt a et sb s et et e eneene s 213
SDL_ GELAUGIOSTALUS ...ttt ettt sbe e e es et st snenenea 214
SDL_LOAUWAY ...ttt ettt et ettt et st s n e 215
SDL_FTEBEWAV ...ttt ettt ettt ettt bt n e 217
SDL_AUGIOCV T .ottt sttt bbb b et s b 218
SDL_BUIHAAUGIOCV T ..ottt 220
SDL_CONVEITAUGIO ...ttt ettt s eneene s 221
SDL_IMIXAUGIO ...ttt ettt bt s nene 224
SDL_LOCKAUTIO ...ttt ettt sb ettt e nne s 225
SDL_UNIOCKAUGIO ..ottt sttt st s nenne s 226
ST] I 1 (o151 AN o [T TSRS 227
11, CD-ROM ..ttt bbbt b e sttt bbbt bbb bt 228
SDL_CDNUMDIIVES ...viiviuietietesieieseeestestestsestestesesas e stesaessesessestesaesessessensesassessessensasens 228
SDL_CDNAEITIE ..ottt ettt ettt bbbt e nnene 230
SDL_CDOPEN «.tteeetireeteieseet ettt ettt se bbbttt b s b st e b en b e 231
SDL_CDSEAIUS ..ttt ettt ettt et e e 233
SDL_CDPIAY ...ttt 235
SDL_CDPIAYTIACKS c.euvtiveuietieiesieieie et steste st e ste st ere et sae e s sae e seese e e ssensesassessesnensenens 236
SDL_CDPAUSE......teetireeteiereeieseetese st sesbes sttt ettt b s b st b st b st sene b as et s e e enenens 238
SDL_CDRESUIME ...ttt ittt sttt sttt st st st e be b e nbe e nbe e sreesnnenneean 239
ST] I 01 1S (o] o OO 240
ST] I 0] =Tt OSSOSO 241
ST] I 0 10 [-SSRSO 242
SDL_CD ettt bbbt bbb en s 243
ST] I O 1 Tot RS STRSSR 245
12. Multi-threaded Programming.......c.coeerierneernen et srere et srene e 246
SDL_CreateTRIEAMcceiieieieee ettt bt e neene s 246
SDL_TRIEAAIDvvcviiicieiicieiiete ettt bbb as et s s s e 248
SDL_GELTRIEAUIDcuvieeiiiieee ettt et s nene s 249
SDL_WaItTRIEAAceiieeiiiee et sttt e ene s 250
SDL_KIIITAIBAGcvvvieviricieiiieces ettt 251
SDL_CrEaEIMULEX ... cueeeeeiee ettt sttt et bttt b s e et sb e 252
SDL_DESIIOYIMULEX......cieeuiiviiriiiiet sttt ettt e 254
SDL_IMULEXP ...ttt ettt et b e ebe e st sbe b e e e e b 255

SDL_MUEEXV ...ttt bbb 256

SDL_CreateSemAaPROrecoviiiiiiieeistise st ee st se et ese e s re e e resnenaenens 257
SDL_DeStroySEmMAPNOrecviiiiireeistise et snenaeneas 259
SDL_SEMWVAIL....c.eiviiiieieiiieeiiiei ettt ettt 260
SDL_SEMTIYWAIL ...vviiieecicee ettt se st re e s b et e et snennenens 262
SDL_SeMWaItTIMEOUL.......cveiiiiiiieeistesie st e se e re e s se e st e e snesnenaenens 264
SDL_SEIMIPOST.... ettt et b ettt et b bt eae e se e sbe e b nr b e 266
SDL_SEMVAIUE ..ottt ettt sttt sttt e e ene s 267
SDL_CreatBCONAeviieeeiitieieieie ettt sttt sttt s a ettt bttt e eneene s 268
SDL_DESIIOYCONG ...ttt 269
SDL_CONASIGNGL ..ottt 270
SDL_CONABIOAUCASEcuvivieeiiirieieeiiste ettt ettt sben et seeneeneas 271
SDL_CONAWRIL ...ttt ettt bt nnne 272
SDL_CONAWAItTIMEOULciitieireeiiitesie ettt et st snesaenea 273
I T T34 USSR 274
SDL_GEETICKS c..viviivetiieteiict ettt ettt ettt s et e enene 274
SDL_DEIAY ..ottt bbb 275
SDL_AUTIME oottt bbbt n b 276
SDL_ REMOVETIME ...c.eiieiniitietesieie ettt sttt sttt sttt be e ebe e sbenee e sse st seenseneas 278
SDL_SEETIMEN c.vetietie sttt ettt sttt sttt a et s et et sbeneesesbe st seeneaneas 279

List of Tables

8-1. SDL KeySym AefiNITIONScvceiiiiiicisesie sttt sttt ne e sne e 161
8-2. SDL MOIfier EFINITIONS ...vccveivi sttt st s re bbb 165

List of Examples

1-2. INPATIZING SDL ...ttt bbbt bt se bbb et e b b nnens 2
2-1. Initializing the VIide0o DiSPIaY.........ccciriiiriiiieirietee et 1
2-2. Initializing the BeSt VIde0 MOGE.........c..ciiiiiiiiciiee e 1
2-3. Loading and Displaying @ BMP File..........cccooiiiiiniiiese e 2
24, GEEPIXEI() vttt bbbttt 3
25, PULPIXEI() + ettt bbb bbbt 3
2-6. USING PULPIXEI() 11t vttt ittt bbbttt 4
2-7. Initializing SDL With OPENGL ...ttt 5
2-8. SDL N0 OPENGL.....tiitiiiiiitiieetieiei ettt bbb bbbt bbbt bt ne b sttt 8
3-1. Initializing SDL With JOYSHICK SUPPOITc.coiitiiriiiiriiiiisieienses e 17
3-2. Querying the Number of Available JOYSHICKS.ccoiiiiiiriice e 17
3-3. OPENING 8 JOYSLICK ...ttt bbbt es bbbt 18
34, JOYSHICK AXIS EVENTS.....cveuiiieciesieieis e ste sttt sttt st st seste e se e e sne st e aesaetesnesneneeneas 19
3-5. MOre JOYSHICK AXIS EVENTS......cciiiiieisiesiesieietes et se s steste st e ste st e e sessesteneetestesaeseenesnensenens 19
3-6. JOYSLICK BULLON EVENTScvecieiieicieccsie sttt st st se st se e snesre e seeresnesnenseneas 20
3-7. JOYSHICK Ball EVENESoveivciecie ettt sttt et st et tesnesrennene s 20
3-8. JOYSHICK HAt EVENLSviiceiciecie ettt st sttt e st e sr e e saetesnesneneeneas 21
3-9. Querying JOYStICK CharaCteriStiCSviviueieieierieieiisisiese et ste e st se e e e sre e eeneenens 22
3-10. Reading Keybhoard EVENLSccccccvciiieiiiecc et sttt 23
3-11. Interpreting Key Event INFOrMationccvcovieiiiiciisinie et 24
3-12. Proper Game IMOVEMENT.......cccuiiiiiiiesiie sttt sttt seesibe st st be b nbe e sbeenbeenbeenreas 28

|. SDL Guide

Preface

About SDL

The SDL library is designed to make it easy to write games that run on Linux, *BSD, MacOS,
Win32 and BeOS using the various native high-performance media interfaces, (for video, audio, etc)
and presenting a single source-code level API to your application. SDL is a fairly low level API, but
using it, completely portable applications can be written with a great deal of flexibility.

About SDLdoc

SDLdoc (The SDL Documentation Project) was formed to completely rewrite the SDL
documentation and to keep it continually up to date. The team consists completely of volunteers
ranging from people working with SDL in their spare time to people who use SDL in their everyday
working lives.

The latest version of this documentation can always be found at the project homepage:
http://sdldoc.sourceforge.net.

Credits

Sam Lantinga, slouken@libsdl.org
Martin Donlon, akawaka@skynet.ie
Mattias Engdegard

Julian Peterson

Ken Jordan

Maxim Sobolev

Wesley Poole

Michael Vance

Andreas Umbach

Andreas Hofmeister

Chapter 1. The Basics

Introduction

The SDL Guide section is pretty incomplete. If you feel you have anything to add mail
akawaka@skynet.ie or visit http://akawaka.csn.ul.ie/tne/.

Initializing SDL

SDL is composed of eight subsystems - Audio, CDROM, Event Handling, File 1/0, Joystick
Handling, Threading, Timers and Video. Before you can use any of these subsystems they must be
initialized by calling SDL_I ni t (or SDL_I ni t SubSyst em SDL_I ni t must be called before any
other SDL function. It automatically initializes the Event Handling, File 1/0 and Threading
subsystems and it takes a parameter specifying which other subsystems to initialize. So, to initialize
the default subsystems and the Video subsystems you would call:

SDL_Init (SDL_INIT_VIDEO);
To initialize the default subsystems, the Video subsystem and the Timers subsystem you would call:

SDL_Init (SDL_INIT VIDEO| SDL_INIT_TIMER);

SDL_I ni t is complemented by SDL_Qui t (and SDL_Qui t SubSyst em). SDL_Qui t shuts down all
subsystems, including the default ones. It should always be called before a SDL application exits.

With SDL_I ni t and SDL_Qui t firmly embedded in your programmers toolkit you can write your
first and most basic SDL application. However, we must be prepare to handle errors. Many SDL
functions return a value and indicates whether the function has succeeded or failed, SDL_I ni t , for
instance, returns -1 if it could not initialize a subsystem. SDL provides a useful facility that allows
you to determine exactly what the problem was, every time an error occurs within SDL an error
message is stored which can be retrieved using SDL_Get Er r or . Use this often, you can never know
too much about an error.

Example 1-1. Initializing SDL

#i ncl ude "SDL. h" /* Al SDL App’s need this */
#i ncl ude <stdi o. h>

int main() {

printf("Initializing SDL.\n");

Chapter 1. The Basics

/* Initialize defaults, Video and Audio */

if((SDL_Init(SDL_INIT_VIDEQ SDL_INIT_AUDI O ==-1)) {
printf("Could not initialize SDL: %.\n", SDL_GetError());
exit(-1);

}

printf("SDL initialized.\n");

printf("Quiting SDL.\n");

/* Shutdown all subsystens */

SDL_Quit();
printf("Qiting....\n");

exit(0);

Chapter 2. Graphics and Video

Introduction to SDL Video

Video is probably the most common thing that SDL is used for, and so it has the most complete
subsystem. Here are a few examples to demonstrate the basics.

Initializing the Video Display

This is what almost all SDL programs have to do in one way or another.

Example 2-1. Initializing the Video Display

SDL_Surface *screen,;

/* Initialize the SDL Iibrary */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {
fprintf(stderr,
"Couldn't initialize SDL: %\n", SDL_GetError());
exit(1);
}

/* Clean up on exit */
atexit(SDL_Quit);

/*
* |Initialize the display in a 640x480 8-bit pal ettized node,
* requesting a software surface
*/
screen = SDL_Set Vi deoMbde(640, 480, 8, SDL_SWSURFACE);
if (screen == NULL) {
fprintf(stderr, "Couldn’t set 640x480x8 vi deo node: %s\n",
SDL_GetError());
exit(1);

Initializing the Best Video Mode

If you have a preference for a certain pixel depth but will accept any other, use SDL_SetVideoMode
with SDL_ANYFORMAT as below. You can also use SDL_VideoModeOK() to find the native video
mode that is closest to the mode you request.

Chapter 2. Graphicsand Video

Example 2-2. Initializing the Best Video Mode

/* Have a preference for 8-bit, but accept any depth */
screen = SDL_Set Vi deovbde(640, 480, 8, SDL_SWBURFACE| SDL_ANYFORMAT) ;
if (screen == NULL) {
fprintf(stderr, "Couldn’t set 640x480x8 vi deo node: %s\n",
SDL_CetError());
exit(1);
}
printf("Set 640x480 at %l bits-per-pixel node\n",
scr een- >f or mat - >Bi t sPer Pi xel) ;

Loading and Displaying a BMP File

The following function loads and displays a BMP file given as argument, once SDL is initialised and
a video mode has been set.

Example 2-3. Loading and Displaying a BMP File

voi d di spl ay_bnp(char *fil e_nane)
{

SDL_Surface *i nage;

/* Load the BMP file into a surface */

i mge = SDL_LoadBMP(fil e_nane);

if (image == NULL) {
fprintf(stderr, "Couldn’t load %: %\n", file_name, SDL_GetError());
return;

* Palettized screen nodes will have a default palette (a standard
* 8*8*4 col our cube), but if the image is palettized as well we can
* use that palette for a nicer colour nmatching
*/
if (image->format->palette & screen->format->palette) {
SDL_Set Col or s(screen, inage->format->pal ette->colors, 0,
i mage- >f or mat - >pal ett e- >ncol ors) ;

}

/* Blit onto the screen surface */

if(SDL_BlitSurface(imge, NULL, screen, NULL) < 0)
fprintf(stderr, "BlitSurface error: %\n", SDL_GetError());

SDL_Updat eRect (screen, 0, 0, inage->w, inmage->h);

/* Free the allocated BWP surface */

Chapter 2. Graphicsand Video

SDL_FreeSurface(i mage);

Drawing Directly to the Display

The following two functions can be used to get and set single pixels of a surface. They are carefully
written to work with any depth currently supported by SDL. Remember to lock the surface before
calling them, and to unlock it before calling any other SDL functions.

To convert between pixel values and their red, green, blue components, use SDL_GetRGB() and
SDL_MapRGBJ().

Example 2-4. getpixel()
/ *

* Return the pixel value at (x, y)
* NOTE: The surface nust be | ocked before calling this!

*/
Ui nt 32 get pi xel (SDL_Surface *surface, int x, int y)
{
int bpp = surface->format->Byt esPer Pi xel ;
/* Here p is the address to the pixel we want to retrieve */
unt8 *p = (Unt8 *)surface->pixels + y * surface->pitch + x * bpp;
switch(bpp) {
case 1:
return *p;
case 2:
return *(Uintl6 *)p;
case 3:
i f (SDL_BYTEORDER == SDL_BI G_ENDI AN)
return p[0] << 16 | p[1l] << 8 | p[2];
el se
return p[0] | p[1l] << 8 | p[2] << 16;
case 4:
return *(Uint32 *)p;
def aul t:
return O; /* shoul dn’t happen, but avoids warnings */
}
}

Chapter 2. Graphicsand Video

Example 2-5. putpixel()

/*
* Set the pixel at (x, y) to the given value
* NOTE: The surface nust be | ocked before calling this!
*/
voi d put pi xel (SDL_Surface *surface, int x, int y, U nt32 pixel)
{
int bpp = surface->format->Byt esPerPi xel ;
/* Here p is the address to the pixel we want to set */
Unt8 *p = (Unt8 *)surface->pixels + y * surface->pitch + x * bpp;

switch(bpp) {
case 1:
*p = pixel;
br eak;

case 2:
*(Uintl6 *)p = pixel;
br eak;

case 3:
i f (SDL_BYTEORDER == SDL_BI G_ENDI AN) {

p[0] = (pixel >> 16) & Oxff;
p[1] = (pixel >> 8) & Oxff;
p[2] = pixel & Oxff;

} else {

p[0] = pixel & Oxff;

p[1] = (pixel >> 8) & Oxff;
p[2] = (pixel >> 16) & Oxff;
}
br eak;
case 4:
*(Uint32 *)p = pixel;
br eak;

}

The following code uses the putpixel() function above to set a yellow pixel in the middle of the
screen.

Example 2-6. Using putpixel()

/* Code to set a yellow pixel at the center of the screen */

int x, vy;
U nt32 yel |l ow,

Chapter 2. Graphicsand Video

/* Map the color yellow to this display (R=0xff, G=0xFF, B=0x00)

Note: |If the display is palettized, you nust set the palette first.
*/
yel l ow = SDL_MapRGB(screen->format, Oxff, Oxff, 0x00);

screen->w / 2;
screen->h / 2;

X
y

/* Lock the screen for direct access to the pixels */
if (SDL_MUSTLOCK(screen)) {
if (SDL_LockSurface(screen) <0) {
fprintf(stderr, "Can't |ock screen: %\n", SDL_GetError());
return;

}
put pi xel (screen, x, y, yellow);

if (SDL_MUSTLOCK(screen)) {
SDL_Unl ockSur f ace(screen);

}
/* Update just the part of the display that we’ ve changed */

SDL_Updat eRect (screen, x, vy, 1, 1);

return;

Using OpenGL With SDL

SDL has the ability to create and use OpenGL contexts on several platforms(Linux/X11, Win32,
BeOS, MacOS Classic/Toolbox, MacOS X, FreeBSD/X11 and Solaris/X11). This allows you to use
SDL’s audio, event handling, threads and times in your OpenGL applications (a function often
performed by GLUT).

Initialisation

Initialising SDL to use OpenGL is not very different to initialising SDL normally. There are three
differences; you must pass SDL_OPENGL to SDL_Set Vi deoMode, you must specify several GL
attributes (depth buffer size, framebuffer sizes) using SDL_GL_Set At t ri but e and finally, if you
wish to use double buffering you must specify it as a GL attribute, not by passing the
SDL_DOUBLEBUF flag to SDL_Set Vi deoMbde.

Chapter 2. Graphicsand Video

Example 2-7. Initializing SDL with OpenGL

/* Information about the current video settings. */
const SDL_Vi deol nfo* info = NULL;

/* Di mensions of our w ndow. */

int wwdth = 0;

int height = 0;

/* Color depth in bits of our w ndow. */

int bpp = 0;

/* Flags we will pass into SDL_Set Vi deoMbde. */

int flags = 0;

/* First, initialize SDL’s video subsystem */
if(SDL_Init(SDL_INNT_VIDEO) <0) {
/* Failed, exit. */
fprintf(stderr, "Video initialization failed: %\n",
SDL_GetError());
quit_tutorial(1);
}

/* Let’s get some video information. */
info = SDL_Get Vi deol nfo();

if(linfo) {
/* This shoul d probably never happen. */
fprintf(stderr, "Video query failed: %\n",
SDL_GetError());
quit_tutorial(1);

* Set our width/height to 640/480 (you woul d

* of course let the user decide this in a nornmal
* app). We get the bpp we will request from

* the display. On X11, VidMode can’'t change

* resolution, so this is probably being overly
* safe. Under W n32, ChangeDi spl aySettings

* can change the bpp.

*/
wi dt h = 640;
hei ght = 480;

bpp = info->vfnt->BitsPerPixel ;

/*

* Now, we want to setup our requested

* wi ndow attributes for our OpenG w ndow.
* W want *at least* 5 bits of red, green
and blue. W also want at |east a 16-bit
* depth buffer.

*

Chapter 2. Graphicsand Video

* The last thing we do is request a double
* puffered window. '1' turns on double
* puffering, 'O turns it off.

* Note that we do not use SDL_DOUBLEBUF in

* the flags to SDL_Set Vi deoMbde. That does

* not affect the G attribute state, only

* the standard 2D blitting setup.

*/
SDL_GL_SetAttribute(SDL_GL_RED SIZE, 5);
SDL_G._SetAttribute(SDL_G._GREEN SIZE, 5);
SDL_G._SetAttribute(SDL_G._BLUE SIZE, 5);
SDL_GL_SetAttribute(SDL_G._DEPTH SI ZE, 16);
SDL_G._SetAttribute(SDL_G._DOUBLEBUFFER, 1);

/*

* W want to request that SDL provide us
* with an OpenG. wi ndow, in a fullscreen
* vi deo node.

* EXERClI SE:

* Make starting wi ndowed an option, and
* handl e the resize events properly with
* gl Vi ewport.

*/

flags = SDL_OPENGL | SDL_FULLSCREEN,

/*
* Set the video node
*/
i f(SDL_SetVideoMbde(wi dth, height, bpp, flags) == 0) {
/*
* This could happen for a variety of reasons,
* including D SPLAY not being set, the specified
* resol ution not being avail able, etc.
*/
fprintf(stderr, "Video node set failed: %\n",
SDL_GetError());
quit_tutorial(1);
}

Drawing

Apart from initialisation, using OpenGL within SDL is the same as using OpenGL with any other
API, e.g. GLUT. You still use all the same function calls and data types. However if you are using a
double-buffered display, then you must use SDL_GL_SwapBuf f er s() to swap the buffers and

Chapter 2. Graphicsand Video

update the display. To request double-buffering with OpenGL, use SDL_GL_Set At t ri but e with
SDL_G._DOUBLEBUFFER, and use SDL_GL_Get At t ri but e to see if you actually got it.

A full example code listing is now presented below.

Example 2-8. SDL and OpenGL

/*

* SDL OpenGL Tutorial.

* (¢) Mchael Vance, 2000

* briareos@ oki games. com

*

* Distributed under terns of the LGPL.
*/

#i ncl ude <SDL/ SDL. h>
#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

static GLbool ean should_rotate = G._TRUE;

static void quit_tutorial (int code)
{
/*
* Quit SDL so we can rel ease the fullscreen
* nmobde and restore the previous video settings,
* etc.
*/
SDL_Quit();

/* Exit program */
exit(code);

}

static void handl e_key_down(SDL_keysynt keysym)
{

* We're only interested if 'Esc’ has
* been presssed.

* EXERCI SE:

* Handl e the arrow keys and have that change the
* view ng position/angle.

*/

switch(keysym >sym) {

Chapter 2. Graphicsand Video

case SDLK_ESCAPE:
quit_tutorial(0);

br eak;
case SDLK_SPACE:
shoul d_rotate = !'shoul d_rotate;
br eak;
def aul t:
br eak;
}
}
static void process_events(void)
{
/* Qur SDL event placehol der. */
SDL_Event event;
/* Grab all the events off the queue. */
whil e(SDL_Pol | Event (&vent)) {
switch(event.type) {
case SDL_KEYDOWN:
/* Handl e key presses. */
handl e_key_down(&event. key. keysym);
br eak;
case SDL_QUIT:
/* Handl e quit requests (like Ctrl-c). */
quit_tutorial(0);
br eak;
}
}
}

static void draw_screen(void)
{
/* Qur angle of rotation. */
static float angle = 0.0f;

* EXERClI SE:
* Replace this awful ness with vertex
* arrays and a call to gl DrawEl enents.

* EXERCI SE:
* After conpleting the above, change
* it to use conpiled vertex arrays.

Chapter 2. Graphicsand Video

* EXERCI SE:

* Verify ny windings are correct here ;).

*/

static Gfloat vO[] = { -1.0f, -1.0f, 1.0f };
static Gfloat vi[] = { 1.0f, -1.0f, 1.0f };
static Gfloat v2[] ={ 1.0f, 1.0f, 1.0f };
static G.float v3[] ={ -1.0f, 1.0f, 1.0f };
static Gfloat v4[] = { -1.0f, -1.0f, -1.0f };
static Gfloat v5[] ={ 1.0f, -1.0f, -1.0f };
static Gfloat v6[] ={ 1.0f, 1.0f, -1.0f };
static Gfloat v7[] = { -1.0f, 1.0f, -1.0f };
static GLubyte red[] { 255 0 0, 255 };
static GLubyte green[] = { 0, 255 0, 255 };
static GLubyte bl ue[] ={ 0, 0, 255, 255 };
static GLubyte white[] = { 255, 255, 255, 255 };
static GLubyte yellow] = { 0, 255, 255, 255 };
static GLubyte black[] = { 0, 0, 0, 255 };
static GLubyte orange[] = { 255, 255, 0, 255 };
static Gubyte purple[] = { 255, 0, 255, 0 };

/* Clear the color and depth buffers. */
gl Cear(G._COLOR BUFFER BIT | G._DEPTH BUFFER BIT);

/* We don't want to nodify the projection matrix. */
gl Matri xMode(GL_MODELVI EW);
gl Loadl dentity();

/* Move down the z-axis. */
gl Translatef(0.0, 0.0, -5.0);

/* Rotate. */
gl Rotatef(angle, 0.0, 1.0, 0.0);

if(should_rotate) {

if(++angle > 360.0f) {
angl e = 0. 0f;
}

}

/* Send our triangle data to the pipeline. */
gl Begi n(GL_TRI ANGLES);

gl Col or4ubv(red);
gl Vertex3fv(vO);

gl Col or 4ubv(green);
gl Vertex3fv(vl);

gl Col or 4ubv(bl ue);

10

gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(

gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(
gl Vert ex3f v(
gl Col or 4ubv(

v2),

red);
vo);
bl ue);
v2),
white);
v3),

green);
vl);
bl ack);
v5),
orange);
v6),

green);
vl);
orange);
v6);

bl ue);
v2),

bl ack);
v5);
yel | ow)
vd),
purple);
v7),

bl ack);
v5);
purple);
v7);
orange);
v6),

yel | ow)
vd),
red);
vo);
white);
v3),

yel | ow)
vd),
white);
v3);
purple);

Chapter 2. Graphicsand Video

11

Chapter 2. Graphicsand Video

gl Vertex3fv(v7);

gl Col or4ubv(white);
gl Vertex3fv(v3);

gl Col or 4ubv(bl ue);
gl Vertex3fv(v2);

gl Col or4ubv(orange);
gl Vertex3fv(v6);

gl Col or4ubv(white);
gl Vertex3fv(v3);
gl Col or 4ubv(orange);
gl Vertex3fv(v6);
gl Col or4ubv(purple);
gl Vertex3fv(v7);

gl Col or 4ubv(green);
gl Vertex3fv(vl);
gl Col or4ubv(red);
gl Vertex3fv(vO);
gl Col or4ubv(yellow);
gl Vertex3fv(v4);

gl Col or 4ubv(green);
gl Vertex3fv(vl);
gl Col or 4ubv(yell ow)
gl Vertex3fv(v4);
gl Col or 4ubv(bl ack);
gl Vertex3fv(v5);

gl End();

/*
* EXERCI SE:
* Draw text telling the user that ' Spc
* pauses the rotation and 'Esc’ quits.
* Do it using vetors and textured quads.
*/

* Swap the buffers. This this tells the driver to

* render the next frame fromthe contents of the

* back-buffer, and to set all rendering operations

* to occur on what was the front-buffer

* Doubl e buffering prevents nasty visual tearing
* fromthe application drawing on areas of the
* screen that are being updated at the same tine.

12

}

Chapter 2. Graphicsand Video

SDL_GL_SwapBuffers();

static void setup_opengl (int width, int height)

{

int

float ratio = (float) width / (float) height;

/* Qur shadi ng nodel --Gouraud (snooth). */
gl ShadeModel (GL_SMOOTH) ;

/* Culling. */

gl Cul | Face(G._BACK);

gl Front Face(GL_CCW);

gl Enabl e(GL_CULL_FACE);

/* Set the clear color. */
gl earColor(0, 0, 0, 0);

/* Setup our viewport. */
gl Viewport(0, 0, width, height);

/*

* Change to the projection matrix and set
* our view ng vol une.

*/

gl Matri xMode(GL_PRQIECTION);

gl Loadl dentity();

/*
* EXERCI SE:
* Replace this with a call to gl Frustum
*/

gl uPerspective(60.0, ratio, 1.0, 1024.0);

main(int argc, char* argv[])

/* Information about the current video settings. */
const SDL_Videol nfo* info = NULL;

/* Di mensi ons of our wi ndow. */

int width = 0;

int height = 0;

/* Color depth in bits of our w ndow. */

int bpp = 0;

/* Flags we will pass into SDL_Set Vi deoMde. */

int flags = 0;

/* First, initialize SDL's video subsystem */
if(SDL_Init(SDL_INNT_VIDEO) < 0) {
/* Failed, exit. */

13

Chapter 2. Graphicsand Video

fprintf(stderr, "Video initialization failed: %\n",
SDL_GetError());
quit_tutorial(1);
}

/* Let’s get sonme video information. */
info = SDL_Get Vi deol nfo();

if(linfo) {
/* This shoul d probably never happen. */
fprintf(stderr, "Video query failed: %\n",
SDL_GetError());
quit_tutorial(1);

* Set our width/height to 640/480 (you woul d

* of course let the user decide this in a nornal
* app). We get the bpp we will request from

* the display. On X11, VidMode can’'t change

* resolution, so this is probably being overly
* safe. Under Wn32, ChangeDi splaySettings

* can change the bpp.

*/
wi dt h = 640;
hei ght = 480;

bpp = info->vfnt->BitsPerPixel ;

* Now, we want to setup our requested

* window attributes for our OpenG. w ndow.
* W want *at least* 5 bits of red, green
* and blue. W also want at |east a 16-bit
* depth buffer.

* The last thing we do is request a double
* puffered window. '1' turns on double
* pbuffering, 'O turns it off.

* Note that we do not use SDL_DOUBLEBUF in

* the flags to SDL_Set Vi deoMbde. That does

* not affect the G attribute state, only

* the standard 2D blitting setup.

*/

SDL_G._SetAttribute(SDL_G._RED SIZE, 5);
SDL_GL_SetAttribute(SDL_G._GREEN SIZE, 5);
SDL_G._SetAttribute(SDL_G._BLUE_SI ZE, 5);
SDL_GL_SetAttribute(SDL_G._DEPTH SI ZE, 16);
SDL_G._Set Attribute(SDL_GL_DOUBLEBUFFER, 1);

14

Chapter 2. Graphicsand Video

* W want to request that SDL provide us
* with an OpenG. wi ndow, in a fullscreen
* video nobde.

* EXERClI SE:

* Make starting wi ndowed an option, and
* handl e the resize events properly with
* gl Vi ewport.

*/

flags = SDL_OPENGL | SDL_FULLSCREEN,

/*
* Set the video node
*/
i f(SDL_SetVideoMode(wi dth, height, bpp, flags) == 0) {
/*
* This could happen for a variety of reasons,
* including D SPLAY not being set, the specified
* resolution not being avail able, etc.
*/
fprintf(stderr, "Video node set failed: %\n",
SDL_GetError());
quit_tutorial(1);
}
/*

* At this point, we should have a properly setup
* doubl e-buffered wi ndow for use with OpenG..

*/

setup_opengl (wi dth, height);

/*
* Now we want to begin our normal app process--
* an event loop with a lot of redraw ng.

*/
while(1) {
/* Process incoming events. */
process_events();
/* Draw the screen. */
draw _screen();
}
/*
* EXERCI SE:

* Record timngs using SDL_GCet Ticks() and
* and print out frames per second at program
* end.

15

Chapter 2. Graphicsand Video

*/

/* Never reached. */
return O;

16

Chapter 3. Input handling

Handling Joysticks

Initialization

The first step in using a joystick in a SDL program is to initialize the Joystick subsystems of SDL.
This done by passing the SDL_I NI T_JOYSTI CKflag to SDL_1I ni t . The joystick flag will usually be
used in conjunction with other flags (like the video flag) because the joystick is usually used to
control something.

Example 3-1. Initializing SDL with Joystick Support

if (! SDL_Init(SDL_INIT_VIDEO| SDL_IN T_JOYSTICK))

{
fprintf(stderr, "Couldn't initialize SDL: %\n", SDL_GetError());
exit(1);

}

This will attempt to start SDL with both the video and the joystick subsystems activated.

Querying

If we have reached this point then we can safely assume that the SDL library has been initialized and
that the Joystick subsystem is active. We can now call some video and/or sound functions to get
things going before we need the joystick. Eventually we have to make sure that there is actually a
joystick to work with. It’s wise to always check even if you know a joystick will be present on the
system because it can also help detect when the joystick is unplugged. The function used to check
for joysticks is SDL_Numloyst i cks.

This function simply returns the number of joysticks available on the system. If it is at least one then
we are in good shape. The next step is to determine which joystick the user wants to use. If the
number of joysticks available is only one then it is safe to assume that one joystick is the one the user
wants to use. SDL has a function to get the name of the joysticks as assigned by the operations
system and that function is SDL_Joyst i ckName. The joystick is specified by an index where 0 is
the first joystick and the last joystick is the number returned by SDL_NumJoyst i cks - 1. In the
demonstration a list of all available joysticks is printed to stdout.

Example 3-2. Querying the Number of Available Joysticks

printf("% joysticks were found.\n\n", SDL_Numloysticks());
printf("The nanes of the joysticks are:\n");

17

Chapter 3. Input handling

for(i=0; i < SDL_Numloysticks(); i++)

{
printf(" %\ n", SDL_JoystickNane(i));

}

Opening a Joystick and Receiving Joystick Events

SDL’s event driven architecture makes working with joysticks a snap. Joysticks can trigger 4
different types of events:

SDL_JoyAxisEvent Occurs when an axis changes

SDL _JoyBallEvent Occurs when a joystick trackball’s position changes
SDL_JoyHatEvent Occurs when a hat’s position changes
SDL_JoyButtonEvent Occurs when a button is pressed or released

Events are received from all joysticks opened. The first thing that needs to be done in order to
receive joystick events is to call SDL_Joyst i ckEvent St at e with the SDL_ENABLE flag. Next you
must open the joysticks that you want to receive envents from. This is done with the

SDL_Joyst i ckOpen function. For the example we are only interested in events from the first
joystick on the system, regardless of what it may be. To receive events from it we would do this:

Example 3-3. Opening a Joystick
SDL_Joystick *joysti ck;

SDL_Joysti ckEvent St at e(SDL_ENABLE) ;
joystick = SDL_Joysti ckQpen(0);

If we wanted to receive events for other joysticks we would open them with calls to

SDL_Joyst i ckOpen just like we opened joystick 0, except we would store the SDL_Joystick
structure they return in a different pointer. We only need the joystick pointer when we are querying
the joysticks or when we are closing the joystick.

Up to this point all the code we have is used just to initialize the joysticks in order to read values at
run time. All we need now is an event loop, which is something that all SDL programs should have
anyway to receive the systems quit events. We must now add code to check the event loop for at least
some of the above mentioned events. Let’s assume our event loop looks like this:

SDL_Event event;
/* Other initializtion code goes here */

/* Start main gane | oop here */

whi | e(SDL_Pol | Event (&event))
{

18

Chapter 3. Input handling

switch(event.type)

{
case SDL_KEYDOWN.
/* handl e keyboard stuff here */
br eak;

case SDL_QUIT:

/* Set whatever flags are necessary to */
/* end the main gane | oop here */

br eak;

}
/* End | oop here */

To handle Joystick events we merely add cases for them, first we’ll add axis handling code. Axis
checks can get kinda of tricky because alot of the joystick events received are junk. Joystick axis
have a tendency to vary just a little between polling due to the way they are designed. To compensate
for this you have to set a threshold for changes and ignore the events that have’nt exceeded the
threshold. 10% is usually a good threshold value. This sounds a lot more complicated than it is. Here
is the Axis event handler:

Example 3-4. Joystick Axis Events

case SDL_JOYAXI SMOTION: /* Handl e Joystick Mtion */

if ((event.jaxis.value < -3200) || (event.jaxis.value > 3200))
{
/* code goes here */
}
br eak;

Another trick with axis events is that up-down and left-right movement are two different sets of axes.
The most important axis is axis 0 (left-right) and axis 1 (up-down). To handle them seperatly in the
code we do the following:

Example 3-5. More Joystick Axis Events

case SDL_JOYAXI SMOTION: /* Handl e Joystick Mtion */

if ((event.jaxis.value < -3200) || (event.jaxis.value > 3200))
{ if(event.jaxis.axis == 0)

{ /* Left-right novenent code goes here */

}

if(event.jaxis.axis == 1)

{

/* Up-Down novenent code goes here */

19

Chapter 3. Input handling

}
}

br eak;

Ideally the code here should use event . j axi s. val ue to scale something. For example lets
assume you are using the joystick to control the movement of a spaceship. If the user is using an
analog joystick and they push the stick a little bit they expect to move less than if they pushed it a lot.
Designing your code for this situation is preferred because it makes the experience for users of
analog controls better and remains the same for users of digital controls.

If your joystick has any additional axis then they may be used for other sticks or throttle controls and
those axis return values too just with differentevent . j axi s. axi s values.

Button handling is simple compared to the axis checking.

Example 3-6. Joystick Button Events

case SDL_JOYBUTTONDOWN: /* Handl e Joystick Button Presses */
if (event.jbutton.button == 0)

{

/* code goes here */
}
br eak;

Button checks are simpler than axis checks because a button can only be pressed or not pressed. The
SDL_JOYBUTTONDOWN event is triggered when a button is pressed and the SDL_JOYBUTTONUP event
is fired when a button is released. We do have to know what button was pressed though, that is done

by reading the event . j but t on. but t on field.

Lastly when we are through using our joysticks we should close them with a call to
SDL_Joyst i ckd ose. To close our opened joystick 0 we would do this at the end of our program:

SDL_Joysti ckC ose(j oystick);

Advanced Joystick Functions

That takes care of the controls that you can count on being on every joystick under the sun, but there
are a few extra things that SDL can support. Joyballs are next on our list, they are alot like axis we a
few minor differences. Joyballs store relative changes unlike the the absolute postion stored in a axis
event. Also one trackball event contains both the change in x and they change in y. Our case for it is
as follows:

Example 3-7. Joystick Ball Events

case SDL_JOYBALLMOTION: /* Handl e Joybal |l Mtion */

20

Chapter 3. Input handling

if(event.jball.ball == 0)
{
/* ball handling */
}
br eak;

The above checks the first joyball on the joystick. The change in position will be stored in
event.jball.xrel andevent.jball.yrel.

Finally we have the hat event. Hats report only the direction they are pushed in. We check hat’s
position with the bitmasks:

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RI GHT
SDL_HAT_DOWN
SDL_HAT_LEFT

Also there are some predefined combinations of the above:
SDL_HAT_RI GHTUP

SDL_HAT_RI GHTDOWN

SDL_HAT _LEFTUP

SDL_HAT_LEFTDOMN

Our case for the hat may resemble the following:

Example 3-8. Joystick Hat Events

case SDL_JOYHATMOTION: /* Handl e Hat Mdtion */
if (event.jhat.hat | SDL_HAT_UP)

{
/* Do up stuff here */
}
if (event.jhat.hat | SDL_HAT_LEFT)
{
/* Do left stuff here */
}
if (event.jhat.hat | SDL_HAT_RI GHTDOM)
{
/* Do right and down together stuff here */
}
br eak;

In addition to the queries for number of joysticks on the system and their names there are additional
functions to query the capabilities of attached joysticks:

SDL_Joyst i ckNumAxes Returns the number of joysitck axes
SDL_Joyst i ckNunBut t ons Returns the number of joysitck buttons
SDL_Joysti ckNunBal I s Returns the number of joysitck balls

21

Chapter 3. Input handling

SDL_Joyst i ckNunHat s Returns the number of joysitck hats

To use these functions we just have to pass in the joystick structure we got when we opened the
joystick. For Example:

Example 3-9. Querying Joystick Characteristics

i nt nunber _of buttons;
SDL_Joystick *joysti ck;

joystick = SDL_Joysti ckQpen(0);
nunber _of _buttons = SDL_Joysti ckNunButtons(j oysti ck);

This block of code would get the number of buttons on the first joystick in the system.

Handling the Keyboard

Keyboard Related Structures

It should make it a lot easier to understand this tutorial is you are familiar with the data types
involved in keyboard access, so I’ll explain them first.

SDLKey

SDLKey is an enumerated type defined in SDL/include/SDL_keysym.h and detailed here. Each
SDLKey symbol represents a key, SDLK_a corresponds to the "a’ key on a keyboard, SDLK_SPACE
corresponds to the space bar, and so on.

SDLMod

SDLMod is an enumerated type, similar to SDLKey, however it enumerates keyboard modifiers
(Control, Alt, Shift). The full list of modifier symbols is here. SDLMod values can be AND’d
together to represent several modifiers.

SDL_keysym

typedef struct{
U nt 8 scancode;
SDLKey sym
SDLMbd nod;
U nt 16 uni code;
} SDL_keysym

22

Chapter 3. Input handling

The SDL_keysym structure describes a key press or a key release. The scancode field is hardware
specific and should be ignored unless you know what your doing. The sy mfield is the SDLKey
value of the key being pressed or released. The nod field describes the state of the keyboard
modifiers at the time the key press or release occurred. So a value of KMOD_NUM | KMOD_CAPS |
KMOD_LSHI FT would mean that Numlock, Capslock and the left shift key were all press (or enabled
in the case of the lock keys). Finally, the uni code field stores the 16-bit unicode value of the key.

Note: It should be noted and understood that this field is only valid when the SDL_keysym is
describing a key press, not a key release. Unicode values only make sense on a key press
because the unicode value describes an international character and only key presses produce
characters. More information on Unicode can be found at www.unicode.org
(http://lwww.unicode.org)

Note: Unicode translation must be enabled using the SDL_Enabl eUNI CODE function.

SDL_KeyboardEvent

t ypedef struct{
Ui nt8 type;
Ui nt8 state;
SDL_keysym keysym
} SDL_Keyboar dEvent;

The SDL_KeyboardEvent describes a keyboard event (obviously). The key member of the
SDL_Event union is a SDL_KeyboardEvent structure. The t ype field specifies whether the event is
a key release (SDL_KEYUP) or a key press (SDL_KEYDOWN) event. The st at e is largely redundant, it
reports the same information as the t ype field but uses different values (SDL_RELEASED and
SDL_PRESSED). The keysymcontains information of the key press or release that this event
represents (see above).

Reading Keyboard Events

Reading keybaord events from the event queue is quite simple (the event queue and using it is
described here). We read events using SDL_Pol | Event inawhi | e() loop and check for
SDL_KEYUP and SDL_KEYDOWN events using a swi t ch statement, like so:

Example 3-10. Reading Keyboard Events

SDL_Event event;

23

Chapter 3. Input handling

/* Poll for events. SDL_Pol | Event() returns O when there are no */
/* nore events on the event queue, our while |loop will exit when */
/* that occurs. */
whil e(SDL_Pol | Event (&vent)){
/* We are only worried about SDL_KEYDOWN and SDL_KEYUP events */
switch(event.type){
case SDL_KEYDOWN:
printf("Key press detected\n");
br eak;

case SDL_KEYUP:
printf("Key rel ease detected\n");
br eak;

defaul t:
br eak;

This is a very basic example. No information about the key press or release is interpreted. We will
explore the other extreme out our first full example below - reporting all available information about
a keyboard event.

A More Detailed Look

Before we can read events SDL must be initialised with SDL_1 ni t and a video mode must be set
using SDL_Set Vi deoMode. There are, however, two other functions we must use to obtain all the
information required. We must enable unicode translation by calling SDL_Enabl eUNI CODE(1) and
we must convert SDLKey values into something printable, using SDL_Get KeyNane

Note: It is useful to note that unicode values < 0x80 translate directly a characters ASCII value.
THis is used in the example below

Example 3-11. Interpreting Key Event Information

#i ncl ude "SDL. h"
/* Function Prototypes */

voi d PrintKeyl nfo(SDL_KeyboardEvent *key);
void PrintMdifiers(SDLMbd nod);

24

Chapter 3. Input handling

/* main */
int min(int argc, char *argv[]){

SDL_Event event;
int quit = 0;

/* Initialise SDL */

if(SDL_Init(SDL_INIT_VIDEO)){
fprintf(stderr, "Could not initialise SDL: %\n", SDL_GetError());
exit(-1);

}

/* Set a video node */

i f(!SDL_SetVideoMdde(320, 200, 0, 0)){
fprintf(stderr, "Could not set video node: %s\n", SDL_GetError());
SDL_Quit();
exit(-1);

}

/* Enabl e Unicode translation */
SDL_Enabl eUNI CODE(1);

/* Loop until an SDL_QUIT event is found */
while('quit){

/* Poll for events */
whi | e(SDL_Pol | Event (&event)){

switch(event.type){
/* Keyboard event */
/* Pass the event data onto PrintKeylnfo() */
case SDL_KEYDOWN:
case SDL_KEYUP:
Print Keyl nfo(&event. key);
br eak;

/* SDL_QUIT event (w ndow cl ose) */
case SDL_QUIT:

quit = 1;

br eak;

defaul t:
br eak;

25

Chapter 3. Input handling

/* Clean up */

SDL_Quit();
exit(0);
}
/* Print all information about a key event */

voi d PrintKeyl nfo(SDL_KeyboardEvent *key){
/* 1s it a release or a press? */
i f(key->type == SDL_KEYUP)
printf("Release:- ");
el se
printf("Press:- ");

/* Print the hardware scancode first */

printf("Scancode: 0x%2X', key->keysym scancode);

/* Print the name of the key */

printf(", Name: %", SDL_Get KeyNane(key->keysymsym));
/* W& want to print the unicode info, but we need to make */
/* sure its a press event first (remenber, rel ease events */

/* don’t have unicode info */
i f(key->type == SDL_KEYDOWN) {
/* If the Unicode value is |ess than 0x80 then the */
/* uni code val ue can be used to get a printable */
/* representation of the key, using (char)unicode. */

printf(", Unicode: ");
i f(key->keysym uni code < 0x80 && key->keysym unicode > 0){
printf("% (0x%94X)", (char)key->keysym uni code,
key- >keysym uni code);

}
el se{

printf("? (0x¥04X)", key->keysym uni code);
}

}

printf("\n");

[* Print modifier info */

Print Modi fiers(key->keysymnod);
}

/* Print nodifier info */
void PrintMdifiers(SDLMod nod){
printf("Mdifers: ");

/* If there are none then say so and return */
i f(nod == KMOD_NONE){

printf("None\n");

return;

26

Chapter 3. Input handling

/* Check for the presence of each SDLMbd val ue */

/* This | ooks messy, but there really isn't */
/* a clearer way. */
if(nod & KMOD_NUM) printf("NUMLOCK ");

if(nmod & KMOD_CAPS) printf("CAPSLOCK ");

if(nod & KMOD_LCTRL) printf("LCTRL ");

if(nod & KMOD_RCTRL) printf("RCTRL ");

if(nod & KMOD_RSHI FT) printf("RSH FT ");

if(nod & KMOD_LSH FT) printf("LSHFT ");

if(nod & KMOD_RALT) printf("RALT ");

if(nod & KMOD_LALT) printf("LALT ");

if(mod & KMOD_ CTRL) printf("CTRL ");

if(nod & KMOD_SHI FT) printf("SHFT ");

if(md & KMOD_ALT) printf("ALT ");

printf("\n");

Game-type Input

I have found that people using keyboard events for games and other interactive applications don’t
always understand one fundemental point.

Keyboard events only take place when a keys state changes from being unpressed to pressed, and vice
versa.

Imagine you have an image of an alien that you wish to move around using the cursor keys - when
you pressed the left arrow key you want him to slide over to the left, when you press the down key
you want him to slide down the screen. Examine the following code, it highlights and error that
many people have made.

/* Alien screen coordi nates */
int alien_x=0, alien_y=0;

/* Initialise SDL and video nodes and all that */

/* Main gane |oop */
/* Check for events */
whil e(SDL_Pol | Event (&vent)){
switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN:
/* Check the SDLKey val ues and nove change the coords */
switch(event. key. keysym sym) {
case SDLK_LEFT:
alien_x -=1;

27

Chapter 3. Input handling

br eak;

case SDLK_RI GHT:
alien_x += 1;
br eak;

case SDLK_UP:
alien_y -= 1;
br eak;

case SDLK_DOMN:
alien_y += 1;
br eak;

defaul t:
br eak;

At first glance you may think this is a perfectly reasonable piece of code for the task, but it isn’t.
Like I said keyboard events only occur when a key changes state, so the user would have to press and
release the left cursor key 100 times to move the alien 100 pixels to the left.

To get around this problem we must not use the events to change the position of the alien, we use the
events to set flags which are then used in a seperate section of code to move the alien. Something
like this:

Example 3-12. Proper Game Movement

/* Alien screen coordi nates */
int alien_x=0, alien_y=0;
int alien_xvel =0, alien_yvel =0;

/* Initialise SDL and video nodes and all that */

/* Main gane | oop */
/* Check for events */
whil e(SDL_Pol | Event (&vent)){
switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN.
/* Check the SDLKey val ues and nove change the coords */
swi tch(event. key. keysym sym) {
case SDLK_LEFT:

alien_xvel = -1,
br eak;

case SDLK _RI GHT:
alien_xvel = 1,

28

br eak;
case SDLK_UP:
alien_yvel =
br eak;
case SDLK_DOMN:
alien_yvel = 1,
br eak;
defaul t:
br eak;
}
br eak;

Chapter 3. Input handling

/* We nust al so use the SDL_KEYUP events to zero the x */
/* and y velocity vari abl es.

/* careful
case SDL_KEYUP:

But we nust al so be */

not to zero the velocities when we shouldn’t*/

switch(event. key. keysym sym) {

case SDLK_LEFT:

/* We check to nmake sure the alien is noving */

/* to the left.
/* velocity.

if(alien_xvel
al i en_xvel
br eak;

case SDLK _RI GHT:

if(alien_xvel
al i en_xvel
br eak;

case SDLK_UP:

if(alien_yvel
al i en_yvel
br eak;

case SDLK_DOWN:

if(alien_yvel
alien_yvel
br eak;
defaul t:

br eak;

}

br eak;

defaul t:
br eak;

/* Update the alien position */

<

I f
If the alien is noving to the
/* right then the right
/* so we don't tocuh the velocity

*/
*/
*/
*/

it is then we zero the

key is still press

0)
0;

29

Chapter 3. Input handling

alien_x += alien_xvel;
alien_y += alien_yvel;

As can be seen, we use two extra variables, alien_xvel and alien_yvel, which represent the motion of
the ship, it is these variables that we update when we detect keypresses and releases.

30

Chapter 4. Examples

Introduction

For the moment these examples are taken directly from the old SDL documentation. By the 1.2
release these examples should hopefully deal with most common SDL programming problems.

Video Examples

Initializing the video display

SDL_Surface *screen;

/* Initialize the SDL Iibrary */
if(SDL_Init(SDL_INIT_VIDEOQ) < 0) {
fprintf(stderr,
"Couldn't initialize SDL: %\n", SDL_GetError());
exit(1);
}

/* Clean up on exit */
atexit(SDL_Quit);

/* Initialize the display in a 640x480 8-bit palettized node */
screen = SDL_Set Vi deoMbde(640, 480, 8, SDL_SWSURFACE);
if (screen == NULL) {
fprintf(stderr, "Couldn’t set 640x480x8 vi deo node: %s\n",
SDL_GetError());
exit(1);

Initializing the best video mode

/* Have a preference for 8-bit, but accept any depth */
screen = SDL_Set Vi deoMbde(640, 480, 8, SDL_SWBURFACE| SDL_ANYFORMAT) ;
if (screen == NULL) {

fprintf(stderr, "Couldn’t set 640x480x8 vi deo node: %s\n",

31

Chapter 4. Examples

SDL_GetError());
exit(1);
}
printf("Set 640x480 at % bits-per-pixel node\n",
screen->f or mat - >Bi t sPer Pi xel) ;

Loading and displaying a BMP file

SDL_Sur face *i nage;
SDL_Rect dest;

int ncolors, i;
SDL_Col or *col ors;

/* Load the BMP file into a surface */
i mge = SDL_LoadBMP("sanpl e. bnp");
if (image == NULL) {
fprintf(stderr, "Couldn’t |oad sanple.bnp: %\n",
SDL_GetError());
return;

}

/* Set the display colors -- SDL_SetCol ors() only does sonething on
pal ettized displays, but it doesn’t hurt anything on Hi Col or or
TrueCol or di spl ays.

If the display colors have al ready been set, this step can be
ski pped, and the library will automatically map the inmage to
the current display colors.

*/
if (imge->format->palette) {
ncol ors = i mage->format - >pal ette->ncol ors;
colors = (SDL_Color *)malloc(ncol ors*si zeof (SDL_Col or));
mencpy(col ors, image->format->pal ette->colors, ncol ors);
}
el se {

int r, g, b;

/* Allocate 256 col or palette */
ncol ors = 256;
colors = (SDL_Col or *)malloc(ncol ors*si zeof (SDL_Col or));

/* Set a 3,3,2 color cube */
for (r=0; r<8; ++r) {
for (g=0; g<8; ++g) {
for (b=0; b<4; ++b) {
i = ((r<<5)[(g9<<2)|b);

32

Chapter 4. Examples

colors[i].r = r<<5;
colors[i].g = g<<5;
colors[i].b = b<<6;

}

}
/* Note: A better way of allocating the palette m ght be

to calculate the frequency of colors in the inage
and create a palette based on that information.
*/
}
/* Set colormap, try for all the colors, but don’'t worry about it */
SDL_Set Col ors(screen, colors, 0, ncolors);
free(col ors);

/* Blit onto the screen surface */

dest.x = 0;
dest.y = 0;
dest.w = i mage- >w;,
dest. h = i nmage- >h;

SDL_BlitSurface(inage, NULL, screen, &dest);
SDL_Updat eRect s(screen, 1, &dest);

/* Free the allocated BWP surface */
SDL_FreeSurface(i mage);
return;

Drawing directly to the display

/* Code to set a yellow pixel at the center of the screen */

Si nt 32 X Y,
Ui nt 32 pi xel ;
U nt8 *bits, bpp;

/* Map the color yellowto this display (R=0xFF, G=0xFF, B=0x00)

Note: If the display is palettized, you nust set the palette first.
*/
pi xel = SDL_MapRGB(screen->format, OxFF, OxFF, 0x00);

/* Calculate the franebuffer offset of the center of the screen */
if (SDL_MUSTLOCK(screen)) {
if (SDL_LockSurface(screen) < 0)
return;

33

}

bpp = screen->format->Byt esPer Pi xel ;
X = screen->w 2;
Y = screen->h/2;

bits = ((Uint8 *)screen->pixel s)+Y*screen->pit ch+X*bpp;

/* Set the pixel */
swi tch(bpp) {
case 1:
*((Uint8 *)(bits)) = (U nt8)pixel;
br eak;
case 2:
*((Uint16 *)(bits)) = (Ui nt16)pixel;
br eak;
case 3: { /* Format/endi an i ndependent */
unt8r, g, b;

r (pi xel >>scr een->f or mat - >Rshi ft) &OxFF;
g (pi xel >>scr een->f or mat - >Gshi ft) &0xFF;
b = (pixel >>screen->f or mat - >Bshi ft) &0xFF;
*((bits)+screen->formt->Rshift/8) r;

*((bits)+screen->format->Gshift/8) = g;
*((bits)+screen->format->Bshift/8) = b;
}
br eak;

case 4:
*((Uint32 *)(bits)) = (Uint32)pixel;
br eak;

}

/* Update the display */
if (SDL_MUSTLOCK(screen)) {
SDL_Unl ockSur f ace(screen);

}
SDL_Updat eRect (screen, X, Y, 1, 1);

return;

Fastest possible surface blit
There are three different ways you can draw an image to the screen:
1.Create a surface and use SDL_BI i t Sur f ace to blit it to the screen

2.Create the video surface in system memory and call SDL_Updat eRect
3.Create the video surface in video memory and call SDL_LockSur f ace

Chapter 4. Examples

The best way to do this is to combine methods:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude "SDL. h"
#include "SDL_tiner.h"

voi d Conpl ai nAndExi t (voi d)

{

int

fprintf(stderr, "Problem 9%\n", SDL_GetError());

exit(1);

mai n(int argc, char *argv[])

SDL_Pi xel Format fnt;
SDL_Surface *screen, *|ocked;
SDL_Surface *i magebnp, *inage;
SDL_Rect dstrect;

int i;

U nt8 *buffer;

/* Initialize SDL */

if (SDL_Init(SDL_INNT_ VIDEO) < 0) {
Conpl ai nAndEXi t () ;

}

atexit(SDL_Quit);

/* Load a BMP image into a surface */
i mgebnp = SDL_LoadBMP("i nage. bmp") ;
if (imagebnmp == NULL) {

Conpl ai nAndEXi t () ;
}

/* Set the video nbde (640x480 at native depth) */

Chapter 4. Examples

screen = SDL_Set Vi deoMbde(640, 480, 0, SDL_HWSURFACE| SDL_FULLSCREEN) ;

if (screen == NULL) {
Conpl ai nAndEXi t () ;
}

/* Set the video colormap */
if (imagebnmp->format->palette !'= NULL) {
SDL_Set Col or s(screen,

i mgebnp- >f or mat - >pal et t e- >col ors,
i magebnp- >f or mat - >pal ett e- >ncol ors) ;

}

/* Convert the image to the video format (maps colors) */

i mage = SDL_Di spl ayFor mat (i magebnp) ;

35

SDL_FreeSurface(i magebm);

if (image

== NULL) {

Conpl ai nAndEXi t () ;

}

/* Draw bands of color on the raw surface */
if (SDL_MUSTLOCK(screen)) {

if (SDL_LockSurface(screen) < 0)
Conpl ai nAndExi t () ;

}

buf fer=(Ui nt8 *)screen->pi xel s;

for (i=0;

i <screen->h; ++i) {

menset (buf fer, (i *255)/ screen->h,

}

screen->wW scr een- >f or mat - >Byt esPer Pi xel) ;
buffer += screen->pitch;

if (SDL_MUSTLOCK(screen)) {
SDL_Unl ockSur f ace(screen);

}

/* Blit the

dstrect.
dstrect.
dstrect.
dstrect.

X

T s<

imge to the center of the screen */
(screen->wi mage->w)/ 2;

(screen->h-i mage->h)/ 2;

i mge- >w;

i mge- >h;

Chapter 4. Examples

if (SDL_BlitSurface(image, NULL, screen, &dstrect) < 0) {
SDL_FreeSurface(i mage);
Conpl ai nAndEXi t () ;

}

SDL_FreeSurface(i mage);

/* Update the screen */
SDL_Updat eRect s(screen, 1, &dstrect);

SDL_Del ay(5000); /* Wait 5 seconds */

exit(0);

Event Examples

36

Chapter 4. Examples

Filtering and Handling Events

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#i ncl ude "SDL. h"

/* This function may run in a separate event thread */
int FilterEvents(const SDL_Event *event) {
static int boycott = 1;

/* This quit event signals the closing of the w ndow */
if ((event->type == SDL_QUIT) && boycott) {
printf("Qit event filtered out -- try again.\n");
boycott = 0;
return(0);
}
if (event->type == SDL_MOUSEMOTI ON) {
printf("Muse noved to (%, %d)\n",
event - >notion. X, event->notion.y);
return(0); /* Drop it, we've handled it */
}

return(l);

int main(int argc, char *argv[])
SDL_Event event;

/* Initialize the SDL library (starts the event |oop) */
if (SDL_Init(SDL_INIT_VIDEQ) < 0) {
fprintf(stderr,
"Couldn't initialize SDL: %\n", SDL_GetError());
exit(1);
}

/* Clean up on exit, exit on wi ndow close and interrupt */
atexit(SDL_Quit);

/* lgnore key events */
SDL_Event St at e(SDL_KEYDOAN, SDL_| GNORE) ;
SDL_Event St at e(SDL_KEYUP, SDL_| GNORE) ;

/* Filter quit and nouse notion events */
SDL_Set EventFilter(FilterEvents);

/* The nouse isn’'t nmuch use unless we have a display for reference */

if (SDL_SetVideoMbde(640, 480, 8, 0) == NULL) {
fprintf(stderr, "Couldn’t set 640x480x8 vi deo node: %s\n",

37

Chapter 4. Examples

SDL_GetError());
exit(1);
}

/* Loop waiting for ESC+Mouse_ Button */
while (SDL_WitEvent (&vent) >= 0) {
switch (event.type) {
case SDL_ACTI VEEVENT: ({
if (event.active.state & SDL_APPACTI VE) {
if (event.active.gain) {
printf("App activated\n");
} else {
printf("App iconified\in");
}
}
}

br eak;

case SDL_MOUSEBUTTONDOWN. {
U nt8 *keys;

keys = SDL_Get KeySt at e(NULL) ;
if (keys[SDLK_ESCAPE] == SDL_PRESSED) {
printf("Bye bye...\n");

exit(0);
}
printf("Muse button pressed\n");
}
br eak;

case SDL_QUIT: {
printf("Quit requested, quitting.\n");
exit(0);
}
br eak;
}
}

/* This shoul d never happen */
printf("SDL_WaitEvent error: %\n", SDL_GetError());
exit(1);

38

Chapter 4. Examples

Audio Examples

Opening the audio device

SDL_Audi oSpec want ed;
extern void fill_audio(void *udata, Ui nt8 *stream int |en);

/* Set the audio format */
want ed. freq = 22050;
want ed. f ormat = AUDI O_S16;

want ed. channel s = 2; /* 1 = nmono, 2 = stereo */
want ed. sanpl es = 1024; /* Cood | ow | atency value for call back */
want ed. cal | back = fill _audi o;

want ed. userdata = NULL;

/* Qpen the audio device, forcing the desired format */

if (SDL_OpenAudi o(&wanted, NULL) < 0) {
fprintf(stderr, "Couldn't open audio: %\n", SDL_GetError());
return(-1);

}

return(0);

Playing audio

static Ui nt8 *audi o_chunk;
static U nt32 audio_len;
static U nt8 *audi o_pos;

/* The audio function callback takes the follow ng paraneters:
stream A pointer to the audio buffer to be filled

| en: The length (in bytes) of the audio buffer
*/
void fill _audio(void *udata, U nt8 *stream int |en)
{

/* Only play if we have data left */
if (audio_len == 0)
return;

/* Mx as much data as possible */

len = (len > audio_len ? audio_len : len);

SDL_M xAudi o(stream audi o_pos, len, SDL_M X_ MAXVOLUVME)
audi o_pos += | en;

39

audio_len -= len;

}

/* Load the audio data ... */

audi o_pos = audi o_chunk;

/* Let the callback function play the audi o chunk */
SDL_PauseAudi o(0) ;

/* Do sone processing */

/* Wait for sound to conplete */
while (audio_len >0) {
SDL_Del ay(100); /* Sleep 1/ 10 second */

}
SDL_Cl oseAudi o();

CDROM Examples

Listing CD-ROM drives

#i ncl ude "SDL. h"

/* Initialize SDL first */
if (SDL_Init(SDL_INIT_CODROM < 0) {

Chapter 4. Examples

fprintf(stderr, "Couldn’t initialize SDL: %\n",SDL_GetError());

exit(1);
}
atexit(SDL_Quit);

/* Find out how many CD-ROM drives are connected to the system*/

printf("Drives available: %\ n", SDL_CDNunDrives());
for (1=0; i<SDL_CDNunDrives(); ++i) {

printf("Drive %: \"%\"\n", i, SDL_CDNane(i));
}

40

Chapter 4. Examples

Opening the default drive

SDL_CD *cdrom
CDst at us st at us;
char *status_str;

cdrom = SDL_CDOpen(0);
if (cdrom== NULL) {
fprintf(stderr, "Couldn’t open default CD-ROM drive: %\n",
SDL_CetError());
exit(2);
}

status = SDL_CDSt at us(cdrom;
switch (status) {
case CD_TRAYEMPTY:
status_str = "tray enpty";
br eak;
case CD_STOPPED:
status_str = "stopped";
br eak;
case CD_PLAYI NG
status_str = "playing";
br eak;
case CD_PAUSED:
status_str = "paused";
br eak;
case CD_ERROR:
status_str = "error state";
br eak;
}
printf("Drive status: %\n", status_str);
if (status >= CD _PLAYING) {
int m s, f;
FRAMES TO MSF(cdrom >cur _frame, &m &s, &f);
printf("Currently playing track %, %d:%.2d\n",
cdrom >track[cdrom >cur _track].id, m s);

41

Chapter 4. Examples

Listing the tracks on a CD

SDL_CD *cdrom /* Assuming this has already been set.. */
int i;
int m s, f;

SDL_CDSt at us(cdromn ;
printf("Drive tracks: %\ n", cdrom >nuntracks);
for (i=0; i<cdrom >nuntracks; ++i) {
FRAMES TO MSF(cdrom >track[i].length, &m &s, &f);
if (f>0)
++S;
printf("\tTrack (index %l) %l: %l: %.2d\n", i,
cdrom>track[i].id, m s);

Play an entire CD

SDL_CD *cdrom /* Assuming this has already been set.. */

/1 Play entire CD
if (CD_I NDRI VE(SDL_CDSt at us(cdrom)))
SDL_CDPI ayTracks(cdrom 0, 0, 0, 0);

/] Play last track:
if (CD_INDRIVE(SDL_CDStatus(cdrom)) {

SDL_CDPI ayTracks(cdrom cdrom >nuntracks-1, 0, 0, 0);
}

I/ Play first and second track and 10 seconds of third track:
if (CD_I NDRI VE(SDL_CDSt atus(cdron)))
SDL_CDPI ayTracks(cdrom 0, 0, 2, 10);

Time Examples

42

Chapter 4. Examples

Time based game loop

#define TI CK_I NTERVAL 30

Ui nt32 TineLeft(void)

{
static U nt32 next_tine = 0;
Ui nt 32 now;
now = SDL_Get Ti cks();
if (next_time <= now) {
next _time = now+Tl CK_| NTERVAL;
return(0);
}
return(next _time-now);
}

/* main gane | oop
while (game_running) {

Updat eGaneSt at e() ;
SDL_Del ay(Ti neLeft());

43

II. SDL Reference

Chapter 5. General

Before SDL can be used in a program it must be initialized with SDL_1 ni t. SDL_I ni t initializes all
the subsystems that the user requests (video, audio, joystick, timers and/or cdrom). Once SDL is
initialized with SDL_I ni t subsystems can be shut down and initialized as needed using

SDL_I ni t SubSyst emand SDL_Qui t SubSyst em

SDL must also be shut down before the program exits to make sure it cleans up correctly. Calling
SDL_Qui t shuts down all subsystems and frees any resources allocated to SDL.

SDL_ Init

Name
SDL_| ni t — Initializes SDL

Synopsis
#i ncl ude "SDL. h"

int SDL_Init(Ui nt32 flags);

Description

Initializes SDL. This should be called before all other SDL functions. The f | ags parameter
specifies what part(s) of SDL to initialize.

SDL_I NI T_TI MER Initializes the timer subsystem.

SDL_| NI T_AUDI O Initializes the audio subsystem.

SDL_I NI T_VI DEO Initializes the video subsystem.

SDL_| NI T_CDROM Initializes the cdrom subsystem.

SDL_| NI T_JOYSTI CK Initializes the joystick subsystem.

SDL_| NI T_EVERYTHI NG Initialize all of the above.

SDL_| NI T_NOPARACHUTE Prevents SDL from catching fatal signals.
SDL_| NI T_EVENTTHREAD

45

Return Value

Returns -1 on an error or 0 on success.

See Also

SDL_Quit,SDL_I nit SubSystem

SDL_Init

46

SDL_InitSubSystem

Name

SDL_I ni t SubSyst em— Initialize subsystems
Synopsis

#i ncl ude "SDL. h"
int SDL_I nitSubSysten(U nt32 fl ags);

Description

After SDL has been initialized with SDL_1 ni t you may initialize uninitialized subsystems with
SDL_I ni t SubSyst em The f | ags parameter is the same as that used in SDL_I ni t .

Examples

/* Seperating Joystick and Video initialization. */
SDL_Init(SDL_I NI T_VI DEO) ;

SDL_Set Vi deoMbde(640, 480, 16, SDL_DOUBLEBUF| SDL_FULLSCREEN) ;
/* Do Some Video stuff */

/* Initialize the joystick subsystem */

SDL_I ni t SubSyst en{ SDL_I NI T_JOYSTI CK) ;

/* Do some stuff with video and joystick */

/* Shut them both down */
SDL_Qui t();

47

Return Value

Returns -1 on an error or 0 on success.

See Also

SDL_Init,SDL_Quit,SDL_Quit SubSyst em

SDL_InitSubSystem

48

SDL_QuitSubSystem

Name
SDL_ Qui t SubSyst em— Shut down a subsystem

Synopsis

#i ncl ude "SDL. h"
voi d SDL_Quit SubSystem(Ui nt 32 fl ags);

Description

SDL_Qui t SubSyst emallows you to shut down a subsystem that has been previously initialized by
SDL_Init or SDL_I ni t SubSystem The f | ags tells SDL_Qui t SubSyst emwhich subsystems to

shut down, it uses the same values that are passed to SDL_I ni t .

See Also

SDL_Quit,SDL_Init,SDL_I nitSubSystem

49

SDL_Quit

Name
SDL_Qui t — Shut down SDL

Synopsis

#i ncl ude "SDL. h"
void SDL_Quit(void);

Description

SDL_Qui t shuts down all SDL subsystems and frees the resources allocated to them. This should
always be called before you exit. For the sake of simplicity you can set SDL_Qui t as your at exi t
call, like:

SDL_Init(SDL_I NI T_VIDEQ SDL_I NI T_AUDI O) ;
atexit(SDL_Quit);

Note: While using at exi t maybe be fine for small programs, more advanced users should shut

down SDL in their own cleanup code. Plus, using at exi t in a library is a sure way to crash
dynamically loaded code

See Also

SDL_Qui t Subsystem SDL_I ni t

50

SDL_WaslInit

Name

SDL_Wasl ni t — Check which subsystems are initialized
Synopsis

#i ncl ude "SDL. h"
U nt32 SDL_Waslnit (Ui nt32 flags);

Description

SDL_Wasl ni t allows you to see which SDL subsytems have been initialized. f | ags is a bitwise
OR’d combination of the subsystems you wish to check (see SDL_I ni t for a list of subsystem flags).

Return Value

SDL_Wasl ni t returns a bitwised OR’d combination of the initialized subsystems.

Examples

/* Here are several ways you can use SDL_Waslnit() */

/* Get init data on all the subsystenms */
Ui nt 32 subsystem.init;

subsystem.init=SDL_Wasl ni t (SDL_I NIl T_EVERYTHI NG) ;
i f(subsystem.init&SDL_I NI T_VI DEO)
printf("Video is initialized.\n");

el se
printf("Video is not initialized.\n");

/* Just check for one specfic subsystem */

i f (SDL_Wasl nit (SDL_I NI T_VI DEO) ! =0)

51

SDL_Waslnit

printf("Video is initialized.\n");
el se
printf("Video is not initialized.\n")

/* Check for two subsystens */

Ui nt 32 subsystem nmask=SDL_I NI T_VI DEQ SDL_I NI T_AUDI G,

i f(SDL_WaslI ni t (subsyst em mask) ==subsyst em nmask)
printf("Video and Audio initialized.\n");

el se
printf("Video and Audio not initialized.\n");

See Also

SDL_I nit,SDL_Subsystem

52

Chapter 6. Video

SDL presents a very simple interface to the display framebuffer. The framebuffer is represented as an
offscreen surface to which you can write directly. If you want the screen to show what you have
written, call the update function which will guarantee that the desired portion of the screen is
updated.

Before you call any of the SDL video functions, you must first call SDL_Init(SDL_INIT_VIDEO),
which initializes the video and events in the SDL library. Check the return code, which should be 0,
to see if there were any errors in starting up.

If you use both sound and video in your application, you need to call SDL_Init(SDL_INIT_AUDIO |
SDL_INIT_VIDEO) before opening the sound device, otherwise under Win32 DirectX, you won’t
be able to set full-screen display modes.

After you have initialized the library, you can start up the video display in a number of ways. The
easiest way is to pick a common screen resolution and depth and just initialize the video, checking
for errors. You will probably get what you want, but SDL may be emulating your requested mode
and converting the display on update. The best way is to query, for the best video mode closest to the
desired one, and then convert your images to that pixel format.

SDL currently supports any bit depth >= 8 bits per pixel. 8 bpp formats are considered 8-bit
palettized modes, while 12, 15, 16, 24, and 32 bits per pixel are considered "packed pixel" modes,
meaning each pixel contains the RGB color components packed in the bits of the pixel.

After you have initialized your video mode, you can take the surface that was returned, and write to
it like any other framebuffer, calling the update routine as you go.

When you have finished your video access and are ready to quit your application, you should call
"SDL_Quit()" to shutdown the video and events.

SDL_GetVideoSurface

Name

SDL_Get Vi deoSur f ace — returns a pointer to the current display surface

Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_GCet Vi deoSur face(void);

53

DL_GetVideoSurface

Description

This function returns a pointer to the current display surface. If SDL is doing format conversion on
the display surface, this function returns the publicly visible surface, not the real video surface.

See Also
SDL_Surface

SDL_GetVideolnfo

Name

SDL_ Get Vi deol nf o — returns a pointer to information about the video hardware

Synopsis

#i ncl ude "SDL. h"
SDL_Vi deol nfo *SDL_Get Vi deol nf o(voi d);

Description

This function returns a read-only pointer to information about the video hardware. If this is called
before SDL_SetVideoMode, the vf nt member of the returned structure will contain the pixel
format of the "best" video mode.

See Also

SDL_Set Vi deoMbde, SDL_Videolnfo

55

SDL_VideoDriverName

Name

SDL_ Vi deoDr i ver Nanme — Obtain the name of the video driver
Synopsis
#i ncl ude "SDL. h"

char *SDL_Vi deoDri ver Name(char *nanebuf, int maxlen);

Description

The buffer pointed to by nanebuf is filled up to a maximum of max| en characters (include the
NULL terminator) with the name of the initialised video driver. The driver name is a simple one
word identifier like "x11" or "windib".

Return Value

Returns NULL if video has not been initialised with SDL_I ni t or a pointer to nanmebuf otherwise.

See Also

SDL_Init SDL_I nitSubSystem

56

SDL_ListModes

Name

SDL_Li st Modes — Returns a pointer to an array of available screen dimensions for the given
format and video flags

Synopsis

#i ncl ude "SDL. h"
SDL_Rect **SDL_Li st Modes(SDL_Pi xel Format *format, Ui nt32 flags);

Description

Return a pointer to an array of available screen dimensions for the given format and video flags,
sorted largest to smallest. Returns NULL if there are no dimensions available for a particular format,
or -1 if any dimension is okay for the given format.

If f or mat is NULL, the mode list will be for the format returned by SDL_GetVideolnfo()->vf nt .
The f | ag parameter is an OR’d combination of surface flags. The flags are the same as those used
SDL_Set Vi deoMbde and they play a strong role in deciding what modes are valid. For instance, if
you pass SDL_HWBURFACE as a flag only modes that support hardware video surfaces will be
returned.

Example

SDL_Rect **nodes;
int i;

/* Get available fullscreen/ hardware nodes */
nmodes=SDL_Li st Modes(NULL, SDL_FULLSCREEN| SDL_HWSURFACE) ;

/* Check is there are any nodes avail able */
i f(nmodes == (SDL_Rect **)0)({

printf("No nodes avail able!\n");

exit(-1);
}

57

/* Check if or resolution is restricted */
i f(nmodes == (SDL_Rect **)-1){
printf("Al resolutions available.\n");
}
el se{
/* Print valid nodes */
printf("Avail abl e Modes\n");
for(i=0;ndes[i]; ++i)

printf(" % x %\n", nodes[i]->w, nodes[i]->h);

See Also

SDL_Set Vi deoMvbde, SDL_Get Vi deol nf o, SDL_Rect, SDL_PixelFormat

SDL_ListModes

58

SDL_VideoModeOK

Name
SDL_ Vi deoMbdeOK — Check to see if a particular video mode is supported.

Synopsis

#i ncl ude "SDL. h"
int SDL_Vi deoMbdeOK(int width, int height, int bpp, Ui nt32 flags);

Description

SDL_Vi deoModeOK returns 0 if the requested mode is not supported under any bit depth, or returns
the bits-per-pixel of the closest available mode with the given width, height and requested surface
flags (see SDL_Set Vi deoMbde).

The bits-per-pixel value returned is only a suggested mode. You can usually request and bpp you
want when setting the video mode and SDL will emulate that color depth with a shadow video
surface.

The arguments to SDL_ Vi deoModeOK are the same ones you would pass to SDL_SetVideoMode

Example

SDL_Surface *screen,;
Ui nt 32 bpp;

printf("Checking node 640x480@6bpp.\n");
bpp=SDL_Vi deoMbdeOK(640, 480, 16, SDL_HWSURFACE);

i f(!bpp){
printf("Mde not available.\n");
exit(-1);

}

printf("SDL Reconmends 640x480@abpp.\n", bpp);
screen=SDL_Set Vi deoMbde(640, 480, bpp, SDL_HWSURFACE);

59

See Also

SDL_Set Vi deoMbde, SDL_Get Vi deol nf o

SDL_VideoModeOK

60

SDL_SetVideoMode

Name
SDL_Set Vi deoMbde — Set up a video mode with the specified width, height and bits-per-pixel.

Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_Set Vi deoMode(int width, int height, int bpp, Uint32
flags);

Description

Set up a video mode with the specified width, height and bits-per-pixel.
If bpp is O, it is treated as the current display bits per pixel.

The f | ags parameter is the same as the f | ags field of the SDL_Surface structure. OR’d
combinations of the following values are valid.

SDL_ SWSURFACE Create the video surface in system memory
SDL_ HWBURFACE Create the video surface in video memory
SDL_ASYNCBLI T Enables the use of asynchronous to the display

surface. This will usually slow down blitting on
single CPU machines, but may provide a speed
increase on SMP systems.

SDL_ ANYFORNVAT Normally, if a video surface of the requested
depth (bpp) is not available, SDL will emulate
one with a shadow surface. Passing

SDL_ ANYFORMAT prevents this and causes SDL to
use the video surface, regardless of its depth.

SDL_HWPALETTE Give SDL exclusive palette access. Without this
flag you may not always get the the colors you
request with SDL_Set Col or s.

61

DL_SetVideoMode

SDL_ DOUBLEBUF

Enable double buffering; only valid with
SDL_HWSURFACE. Calling SDL_FI i p will flip
the buffers and update the screen. If double
buffering could not be enabled then SDL_Fl i p
will just perform a SDL_Updat eRect on the
entire screen.

SDL_ FULLSCREEN

SDL will attempt to use a fullscreen mode

SDL_OPENGL

Create an OpenGL rendering context. You should
have previously set OpenGL video attributes with
SDL_GL_Set Attribute.

SDL_OPENGLBLI T

Create an OpenGL rendering context, like above,
but allow normal blitting operations.

SDL_RESI ZABLE

Create a resizable window. When the window is
resized by the user a SDL_VI DEORESI ZE event is
generated and SDL_Set Vi deoMbde can be called
again with the new size.

SDL_NOFRAME

If possible, SDL_NOFRANME causes SDL to create a
window with no title bar or frame decoration.
Fullscreen modes automatically have this flag set.

Note: Whatever f | ags SDL_Set Vi deoMbde could satisfy are set in the f | ags member of the

returned surface.

Return Value

The framebuffer surface, or NULL if it fails.

See Also

SDL_LockSurface, SDL_Set Col ors, SDL_Fl i p, SDL_Surface

62

SDL_UpdateRect

Name

SDL_Updat eRect — Makes sure the given area is updated on the given screen.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Updat eRect (SDL_Surface *screen, Sint32 x, Sint32 vy,
Sint32 h);

Description

Makes sure the given area is updated on the given screen.
If’x”,’y’,’w’ and ’h” are all 0, SDL_Updat eRect will update the entire screen.

This function should not be called while ’scr een’ is locked.

See Also

SDL_Updat eRect s, SDL_Rect, SDL_Surface, SDL_LockSur f ace

Sint 32 w,

63

SDL_UpdateRects

Name

SDL_Updat eRect s — Makes sure the given list of rectangles is updated on the given screen.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Updat eRect s(SDL_Surface *screen, int nunrects, SDL_Rect *rects);

Description

Makes sure the given list of rectangles is updated on the given screen.

This function should not be called while scr een is locked.

Note: It is adviced to call this function only once per frame, since each call has some processing
overhead. This is no restriction since you can pass any number of rectangles each time.

The rectangles are not automatically merged or checked for overlap. In general, the programmer
can use his knowledge about his particular rectangles to merge them in an efficient way, to avoid
overdraw.

See Also

SDL_Updat eRect , SDL_Rect, SDL_Surface, SDL_LockSur f ace

SDL_Flip

Name
SDL_FI i p — Swaps screen buffers

Synopsis

#i ncl ude "SDL. h"
int SDL_Flip(SDL_Surface *screen);

Description

On hardware that supports double-buffering, this function sets up a flip and returns. The hardware
will wait for vertical retrace, and then swap video buffers before the next video surface blit or lock
will return. On hardware that doesn’t support double-buffering, this is equivalent to calling
SDL_UpdateRect(screen, 0, 0, 0, 0)

The SDL_DOUBLEBUF flag must have been passed to SDL_SetVideoMode, when setting the video
mode for this function to perform hardware flipping.

Return Value

This function returns 0 if successful, or -1 if there was an error.

See Also

SDL_Set Vi deoMobde, SDL_Updat eRect , SDL_Surface

65

SDL_SetColors

Name

SDL_ Set Col or s — Sets a portion of the colormap for the given 8-bit surface.
Synopsis

#i ncl ude "SDL. h"
int SDL_Set Col ors(SDL_Surface *surface, SDL_Color *colors, int firstcolor,
int ncolors);

Description

Sets a portion of the colormap for the given 8-bit surface.

When sur f ace is the surface associated with the current display, the display colormap will be
updated with the requested colors. If SDL_HWPALETTE was set in SDL_SetVideoMode flags,
SDL_Set Col or s will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of a SDL_Color structure are 8-bits in size, giving you a total of 256°
=16777216 colors.

Palettized (8-bit) screen surfaces with the SDL_HWPALETTE flag have two palettes, a logical palette
that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the display). SDL_Set Col or s modifies both palettes (if present),
and is equivalent to calling SDL_SetPalette with the f | ags set to (SDL_LOGPAL |
SDL_PHYSPAL) .

Return Value

If sur f ace is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed to SDL_Set Col or s, it will return 1. If not all the color entries were set exactly as
given, it will return 0, and you should look at the surface palette to determine the actual color palette.

Example

/* Create a display surface with a grayscale palette */

66

SDL_Surface *screen,;
SDL_Col or col ors[256];
int i;

/* Fill colors with color information */
for(i=0;i<256;i++){

colors[i].r=i;

colors[i].g=i;

colors[i].b=i;

}

/* Create display */
screen=SDL_Set Vi deoMbde(640, 480, 8, SDL_HWPALETTE);
if(!screen){

printf("Couldn't set video node: %\n", SDL_GetError());

exit(-1);
}

/* Set palette */
SDL_Set Col ors(screen, colors, 0, 256);

See Also

SDL_Color SDL_Surface, SDL_Set Pal et t e, SDL_Set Vi deoMde

SDL_SetColors

67

SDL_SetPalette

Name

SDL_Set Pal et t e — Sets the colors in the palette of an 8-bit surface.
Synopsis

#i ncl ude "SDL. h"
int SDL_SetPal ette(SDL_Surface *surface, int flags, SDL_Col or *colors, int
firstcolor, int ncolors);

Description

Sets a portion of the palette for the given 8-bit surface.

Palettized (8-bit) screen surfaces with the SDL_HWPALETTE flag have two palettes, a logical palette
that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the display). SDL_BIitSurface always uses the logical palette when
blitting surfaces (if it has to convert between surface pixel formats). Because of this, it is often useful
to modify only one or the other palette to achieve various special color effects (e.g., screen fading,
color flashes, screen dimming).

This function can modify either the logical or physical palette by specifing SDL_LOGPAL or
SDL_PHYSPALthe in the f | ags parameter.

When sur f ace is the surface associated with the current display, the display colormap will be
updated with the requested colors. If SDL_HWPALETTE was set in SDL_SetVideoMode flags,
SDL_Set Pal et t e will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of a SDL_Color structure are 8-bits in size, giving you a total of
256°=16777216 colors.

Return Value

If sur f ace is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed to SDL_Set Pal et t e, it will return 1. If not all the color entries were set exactly
as given, it will return 0, and you should look at the surface palette to determine the actual color
palette.

68

SDL_SetPalette

Example

/* Create a display surface with a grayscale palette */
SDL_Surface *screen;

SDL_Col or col ors[256];

int i;

/* Fill colors with color information */
for(i=0;i<256;i++){

colors[i].r=i;

colors[i].g=i;

colors[i].b=i;

}

/* Create display */

screen=SDL_Set Vi deoMbde(640, 480, 8, SDL_HWPALETTE);

i f(!screen){
printf("Couldn't set video node: %s\n", SDL_GetError());
exit(-1);

}

/* Set palette */
SDL_Set Pal ette(screen, SDL_LOGPAL| SDL_PHYSPAL, colors, 0, 256);

See Also
SDL_SetColors, SDL_SetVideoMode, SDL_Surface, SDL_Color

69

SDL_SetGamma

Name

SDL_ Set Gamma — Sets the color gamma function for the display
Synopsis

#i ncl ude "SDL. h"
int SDL_Set Ganma(fl oat redgamm, float greenganmm, float bl ueganmms);

Description

Sets the "gamma function” for the display of each color component. Gamma controls the
brightness/contrast of colors displayed on the screen. A gamma value of 1. 0 is identity (i.e., no
adjustment is made).

This function adjusts the gamma based on the *gamma function" parameter, you can directly specify
lookup tables for gamma adjustment with SDL_SetGammaRamp.

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_GetGammaRamp SDL_SetGammaRamp

70

SDL_GetGammaRamp

Name
SDL_ Get GammaRanp — Gets the color gamma lookup tables for the display

Synopsis

#i ncl ude "SDL. h"
int SDL_Get GanmaRanp(Uint 16 *redtable, U ntl1l6 *greentable, U ntl6
*bl uet abl e) ;

Description

Gets the gamma translation lookup tables currently used by the display. Each table is an array of 256
Uint16 values.

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error.

See Also
SDL_SetGamma SDL_SetGammaRamp

71

SDL_SetGammaRamp

Name
SDL_ Set GammaRanp — Sets the color gamma lookup tables for the display

Synopsis

#i ncl ude "SDL. h"
int SDL_Set GanmaRanp(Uint 16 *redtable, U ntl1l6 *greentable, U ntl6
*bl uet abl e) ;

Description

Sets the gamma lookup tables for the display for each color component. Each table is an array of 256
Uint16 values, representing a mapping between the input and output for that channel. The input is
the index into the array, and the output is the 16-bit gamma value at that index, scaled to the output
color precision. You may pass NULL to any of the channels to leave them unchanged.

This function adjusts the gamma based on lookup tables, you can also have the gamma calculated
based on a "gamma function" parameter with SDL_SetGamma.

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_SetGamma SDL_GetGammaRamp

72

SDL_MapRGB

Name
SDL_MapRGB — Map a RGB color value to a pixel format.

Synopsis

#i ncl ude "SDL. h"
U nt32 SDL_MapRGB(SDL_Pi xel Format *fmt, Unt8 r, Unt8 g, Unt8 b);

Description

Maps the RGB color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has an alpha component it will be returned as all 1 bits (fully opaque).

Return Value

A pixel value best approximating the given RGB color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also

SDL_Get RGB, SDL_Get RGBA, SDL_MapRGBA, SDL_PixelFormat

73

SDL_MapRGBA

Name
SDL_MapRGBA — Map a RGBA color value to a pixel format.

Synopsis

#i ncl ude "SDL. h"
U nt32 SDL_MapRGBA(SDL_Pi xel Format *fnt, Unt8 r, Unt8 g, Unt8 b, Unt8
a);

Description

Maps the RGBA color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has no alpha component the alpha value will be ignored (as it will be in
formats with a palette).

Return Value

A pixel value best approximating the given RGBA color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also
SDL_GetRGB, SDL_GetRGBA, SDL_MapRGB, SDL_PixelFormat

74

SDL_GetRGB

Name
SDL_ Get RGB— Get RGB values from a pixel in the specified pixel format.

Synopsis

#i ncl ude "SDL. h"
voi d SDL_Get RGB(Ui nt 32 pi xel, SDL_Pi xel Format *fnt, U nt8 *r, Uint8 *g,
Uint8 *b);

Description

Get RGB component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [Oxff, Oxff, Oxff] not [0xf8, Oxfc, Oxf8]).

See Also

SDL_Get RGBA, SDL_MapRGB, SDL_MapRGBA, SDL_PixelFormat

75

SDL_GetRGBA

Name
SDL_ Get RGBA — Get RGBA values from a pixel in the specified pixel format.

Synopsis

#i ncl ude "SDL. h"
voi d SDL_Get RGBA(Ui nt 32 pi xel, SDL_Pixel Format *fnt, U nt8 *r, Unt8 *g,
Unt8 *b, Uint8 *a);

Description

Get RGBA component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [Oxff, Oxff, Oxff] not [0xf8, Oxfc, Oxf8]).

If the surface has no alpha component, the alpha will be returned as 0xff (100% opaque).

See Also
SDL_GetRGB, SDL_MapRGB, SDL_MapRGBA, SDL_PixelFormat

76

SDL_CreateRGBSurface

Name
SDL_Cr eat eRGBSur f ace — Create an empty SDL_Surface

Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_Creat eRGBSurface(Uint32 flags, int width, int height, int
depth, Ui nt32 Rmask, Uint32 Gmask, U nt32 Bmask, Ui nt32 Anmask);

Description

Allocate an empty surface (must be called after SDL_SetVideoMode)

If dept h is 8 bits an empty palette is allocated for the surface, otherwise a ’packed-pixel’
SDL_PixelFormat is created using the [RGBA] mask’s provided (see SDL_PixelFormat). The
f | ags specifies the type of surface that should be created, it is an OR’d combination of the
following possible values.

SDL_ SWSURFACE SDL will create the surface in system memory.
This improves the performance of pixel level
access, however you may not be able to take
advantage of some types of hardware blitting.
SDL_ HWSURFACE SDL will attempt to create the surface in video
memory. This will allow SDL to take advantage of
\Video->Video blits (which are often accelerated).
SDL_ SRCCOLORKEY \With this flag SDL will attempt to find the best
location for this surface, either in system memory
or video memory, to obtain hardware colorkey
blitting support.

SDL_ SRCALPHA \With this flag SDL will attempt to find the best
location for this surface, either in system memory
or video memory, to obtain hardware alpha
support

77

SDL_CreateRGBSurface

See Also

SDL_Cr eat eR@BSur f aceFrom SDL_Fr eeSur f ace, SDL_Set Vi deoMbde, SDL_LockSur f ace,
SDL_PixelFormat, SDL_Surface

78

SDL_CreateRGBSurfaceFrom

Name
SDL_ Cr eat eRGBSur f aceFr om— Create an SDL_Surface from pixel data

Synopsis

#i ncl ude "SDL. h"

SDL_Surface *SDL_Creat eRGBSur f aceFron{voi d *pixels, int width, int height,
int depth, int pitch, U nt32 Rmask, Ui nt32 Grask, U nt32 Bnask, Uint32
Amask) ;

Description

Creates an SDL_Surface from the provided pixel data.

The data stored in pi xel s is assumed to be of the dept h specified in the parameter list. The pixel
data is not copied into the SDL_Surface structure so it should no be freed until the surface has been
freed with a called to SDL_FreeSurface. pi t ch is the length of each scanline in bytes.

See SDL_Cr eat eRGBSur f ace for a more detailed description of the other parameters.

See Also

SDL_Cr eat eRGBSur f ace, SDL_Fr eeSur f ace

79

SDL_FreeSurface

Name
SDL_Fr eeSur f ace — Frees (deletes) a SDL_Surface

Synopsis
#i ncl ude "SDL. h"

voi d SDL_FreeSurface(SDL_Surface *surface);

Description

Frees the resources used by a previously created SDL_Surface. If the surface was created using
SDL_CreateRGBSurfaceFrom then the pixel data is not freed.

See Also

SDL_Cr eat eRGBSur f ace SDL_Cr eat eRGBSur f aceFr om

80

SDL_LockSurface

Name

SDL_LockSur f ace — Lock a surface for directly access.

Synopsis

#i ncl ude "SDL. h"
int SDL_LockSurface(SDL_Surface *surface);

Description

SDL_LockSur f ace sets up a surface for directly accessing the pixels. Between calls to
SDL_LockSur f ace and SDL_Unl ockSur f ace, you can write to and read from

sur f ace- >pi xel s, using the pixel format stored in sur f ace- >f or mat . Once you are done
accessing the surface, you should use SDL_Unl ockSur f ace to release it.

Not all surfaces require locking. If SDL_MJSTLOCK(sur f ace) evaluates to 0, then you can read and
write to the surface at any time, and the pixel format of the surface will not change.

No operating system or library calls should be made between lock/unlock pairs, as critical system
locks may be held during this time.

It should be noted, that since SDL 1.1.8 surface locks are recursive. This means that you can lock a
surface multiple times, but each lock must have a match unlock.

SDL_LockSurface(surface);

/* Surface is |ocked */
/* Direct pixel access on surface here */

SDL_LockSurface(surface);
/* More direct pixel access on surface */

SDL_Unl ockSur face(surface);

/* Surface is still |ocked */
/* Note: |s versions < 1.1.8, the surface woul d have been */
/* no longer |ocked at this stage */

81

SDL_Unl ockSur face(surface);
/* Surface is now unl ocked */

Return Value

SDL_LockSur f ace returns 0, or -1 if the surface couldn’t be locked.

See Also

SDL_Unl ockSur f ace

DL_LockSurface

82

SDL_UnlockSurface

Name

SDL_Unl ockSur f ace — Unlocks a previously locked surface.
Synopsis
#i ncl ude "SDL. h"

voi d SDL_Unl ockSurface(SDL_Surface *surface);

Description

Surfaces that were previously locked using SDL_LockSur f ace must be unlocked with
SDL_Unl ockSur f ace. Surfaces should be unlocked as soon as possible.

It should be noted that since 1.1.8, surface locks are recursive. See SDL_LockSur f ace.

See Also

SDL_LockSurface

83

SDL_LoadBMP

Name
SDL_LoadBMP — Load a Windows BMP file into an SDL_Surface.

Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_LoadBMP(const char *file);

Description

Loads a surface from a named Windows BMP file.

Return Value

Returns the new surface, or NULL if there was an error.

See Also

SDL_SaveBMP

SDL_SaveBMP

Name
SDL_SaveBMP — Save an SDL_Surface as a Windows BMP file.

Synopsis

#i ncl ude "SDL. h"
int SDL_SaveBMP(SDL_Surface *surface, const char *file);

Description

Saves the SDL_Surface sur f ace as a Windows BMP file named fi | e.

Return Value

Returns 0 if successful or -1 if there was an error.

See Also

SDL_LoadBWMP

85

SDL_SetColorKey

Name

SDL_ Set Col or Key — Sets the color key (transparent pixel) in a blittable surface and RLE
acceleration.

Synopsis

#i ncl ude "SDL. h"
int SDL_Set Col or Key(SDL_Surface *surface, U nt32 flag, U nt32 key);

Description

Sets the color key (transparent pixel) in a blittable surface and enables or disables RLE blit
acceleration.

RLE acceleration can substantially speed up blitting of images with large horizontal runs of
transparent pixels (i.e., pixels that match the key value). The key must be of the same pixel format
asthe sur f ace, SDL_MapRGB is often useful for obtaining an acceptable value.

If f | ag is SDL_SRCCOLORKEY then key is the transparent pixel value in the source image of a blit.

If f | ag is OR’d with SDL_RLEACCEL then the surface will be draw using RLE acceleration when
drawn with SDL_BIitSurface. The surface will actually be encoded for RLE acceleration the first
time SDL_BIitSurface or SDL_DisplayFormat is called on the surface.

If f | ag is 0, this function clears any current color key.

Return Value

This function returns 0, or -1 if there was an error.

See Also

SDL_BlitSurface,SDL_Di spl ayFor mat, SDL_MapRGB, SDL_Set Al pha

86

SDL_SetAlpha

Name
SDL_ Set Al pha — Adjust the alpha properties of a surface

Synopsis

#i ncl ude "SDL. h"
int SDL_Set Al pha(SDL_Surface *surface, U nt32 flag, U nt8 al pha);

Description

Note: This function and the semantics of SDL alpha blending have changed since version 1.1.4.
Up until version 1.1.5, an alpha value of 0 was considered opaque and a value of 255 was
considered transparent. This has now been inverted: 0 (SDL_ALPHA_ TRANSPARENT) is now
considered transparent and 255 (SDL_ALPHA_OPAQUE) is now considered opaque.

SDL_Set Al pha is used for setting the per-surface alpha value and/or enabling and disabling alpha
blending.

Thesur f ace parameter specifies which surface whose alpha attributes you wish to adjust. f | ags
is used to specify whether alpha blending should be used (SDL_SRCALPHA) and whether the surface
should use RLE acceleration for blitting (SDL_RLEACCEL). f | ags can be an OR’d combination of
these two options, one of these options or 0. If SDL_SRCALPHA is not passed as a flag then all alpha
information is ignored when blitting the surface. The al pha parameter is the per-surface alpha
value; a surface need not have an alpha channel to use per-surface alpha and blitting can still be
accelerated with SDL_ RLEACCEL .

Note: The per-surface alpha value of 128 is considered a special case and is optimised, so it's
much faster than other per-surface values.

Alpha effects surface blitting in the following ways:

RGBA->RGB with SDL_SRCALPHA The source is alpha-blended with the destination,
using the alpha channel. SDL_ SRCCOLORKEY and
the per-surface alpha are ignored.

87

RGBA->RGB without SDL_ SRCALPHA

RGB->RGBA with SDL_SRCALPHA

RGB->RGBA without SDL_ SRCALPHA

RGBA->RGBA with SDL_SRCALPHA

RGBA->RGBA without SDL_ SRCALPHA

RGB->RGB with SDL_ SRCALPHA

RGB->RGB without SDL_ SRCALPHA

DL_SetAlpha

The RGB data is copied from the source. The
source alpha channel and the per-surface alpha
value are ignored.

The source is alpha-blended with the destination
using the per-surface alpha value. If

SDL_ SRCCOLORKEY is set, only the pixels not
matching the colorkey value are copied. The alpha
channel of the copied pixels is set to opaque.

The RGB data is copied from the source and the
alpha value of the copied pixels is set to opaque. If
SDL_ SRCCOLORKEY is set, only the pixels not
matching the colorkey value are copied.

The source is alpha-blended with the destination
using the source alpha channel. The alpha channel
in the destination surface is left untouched.
SDL_SRCCOLORKEY is ignored.

The RGBA data is copied to the destination
surface. If SDL_SRCCOLORKEY is set, only the
pixels not matching the colorkey value are copied.

The source is alpha-blended with the destination
using the per-surface alpha value. If
SDL_SRCCOLORKEY is set, only the pixels not
matching the colorkey value are copied.

The RGB data is copied from the source. If
SDL_SRCCOLORKEY is set, only the pixels not
matching the colorkey value are copied.

Note: Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the
destination surface. This means that you cannot compose two arbitrary RGBA surfaces this way
and get the result you would expect from "overlaying" them; the destination alpha will work as a

mask.

Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always

used if available

Return Value

This function returns 0, or -1 if there was an error.

88

DL_SetAlpha

See Also

SDL_MapRGBA, SDL_Get RGBA, SDL_Di spl ayFor nat Al pha, SDL_BI i t Sur f ace

89

SDL_SetClipRect

Name

SDL_Set O i pRect — Sets the clipping rectangle for a surface.
Synopsis

#i ncl ude "SDL. h"
void SDL_Set Cl i pRect (SDL_Surface *surface, SDL_Rect *rect);

Description

Sets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle will be drawn into.

The rectangle pointed to by r ect will be clipped to the edges of the surface so that the clip
rectangle for a surface can never fall outside the edges of the surface.

Ifrect is NULL the clipping rectangle will be set to the full size of the surface.

See Also

SDL_Get Ol i pRect,SDL_Bl it Surface, SDL_Surface

90

SDL_GetClipRect

Name
SDL_Get O i pRect — Gets the clipping rectangle for a surface.

Synopsis
#i ncl ude "SDL. h"

void SDL_GetC i pRect (SDL_Surface *surface, SDL_Rect *rect);

Description

Gets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle is drawn into.

The rectangle pointed to by r ect will be filled with the clipping rectangle of the surface.

See Also

SDL_Set Cl i pRect,SDL_Bl it Surface, SDL_Surface

91

SDL_ConvertSurface

Name

SDL_Convert Sur f ace — Converts a surface to the same format as another surface.
Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_Convert Surface(SDL_Surface *src, SDL_Pi xel Format *fnt,
Ui nt32 flags);

Description

Creates a new surface of the specified format, and then copies and maps the given surface to it. If this
function fails, it returns NULL.

The f | ags parameter is passed to SDL_Cr eat eRGBSur f ace and has those semantics.

This function is used internally by SDL_Di spl ayFor nat .

Return Value

Returns either a pointer to the new surface, or NULL on error.

See Also

SDL_Cr eat eRGBSur f ace, SDL_Di spl ayFor mat , SDL_PixelFormat, SDL_Surface

92

SDL_BlitSurface

Name

SDL_BI i t Sur f ace — This performs a fast blit from the source surface to the destination surface.
Synopsis

#i ncl ude "SDL. h"
int SDL_BlitSurface(SDL_Surface *src, SDL_Rect *srcrect, SDL_Surface *dst,
SDL_Rect *dstrect);

Description

This performs a fast blit from the source surface to the destination surface.
Only the position is used in the dst r ect (the width and height are ignored).
If either srcrect ordstrect are NULL, the entire surface (sr c or dst) is copied.

The final blit rectangle is saved in dst r ect after all clipping is performed (sr cr ect is not
modified).

The blit function should not be called on a locked surface.

The results of blitting operations vary greatly depending on whether SDL_ SRCAPLHA is set or not.
See SDL_SetAlpha for an explaination of how this effects your results. Colorkeying and alpha
attributes also interact with surface blitting, as the following pseudo-code should hopefully explain.

if (source surface has SDL_SRCALPHA set) {
if (source surface has al pha channel (that is, format->Amask != 0))
blit using per-pixel alpha, ignoring any col our key
el se {
if (source surface has SDL_SRCCOLORKEY set)
blit using the colour key AND the per-surface al pha val ue
el se
blit using the per-surface al pha val ue
}
} else {
if (source surface has SDL_SRCCOLORKEY set)
blit using the col our key
el se
ordi nary opaque rectangular blit

93

SDL_BlitSurface

Return Value

If the blit is successful, it returns 0, otherwise it returns -1.

If either of the surfaces were in video memory, and the blit returns -2, the video memory was lost, so
it should be reloaded with artwork and re-blitted:

while (SDL_BlitSurface(image, ingrect, screen, dstrect) == -2) {
while (SDL_LockSurface(image)) < 0)
Sl eep(10);

-- Wite inmage pixels to i mage->pi xels --
SDL_Unl ockSur f ace(i mage) ;
}

This happens under DirectX 5.0 when the system switches away from your fullscreen application.
Locking the surface will also fail until you have access to the video memory again.

See Also

SDL_LockSurface, SDL_Fi | | Rect, SDL_Surface, SDL_Rect

94

SDL_FillRect

Name

SDL_Fi | | Rect — This function performs a fast fill of the given rectangle with some color
Synopsis

#i ncl ude "SDL. h"
int SDL_Fill Rect(SDL_Surface *dst, SDL_Rect *dstrect, U nt32 color);

Description

This function performs a fast fill of the given rectangle with col or . If dst r ect is NULL, the
whole surface will be filled with col or .

The color should be a pixel of the format used by the surface, and can be generated by the
SDL_MapRGB function.

If there is a clip rectangle set on the destination (set via SDL_SetClipRect) then this function will
clip based on the intersection of the clip rectangle and the dst r ect rectangle.

Return Value

This function returns 0 on success, or -1 on error.

See Also

SDL_MapRGB, SDL_BI i t Sur f ace, SDL_Rect

95

SDL_DisplayFormat

Name

SDL_Di spl ayFor mat — Convert a surface to the display format

Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_Di spl ayFor mat (SDL_Sur f ace *surface);

Description

This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer, suitable for fast blitting onto the display surface. It calls SDL_ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

If you want an alpha channel, see SDL_DisplayFormatAlpha.

Return Value

If the conversion fails or runs out of memory, it returns NULL

See Also

SDL_Convert Sur face, SDL_Di spl ayFor nat Al pha SDL_Set Al pha, SDL_Set Col or Key,
SDL_Surface

96

SDL_DisplayFormatAlpha

Name

SDL_Di spl ayFor mat Al pha — Convert a surface to the display format
Synopsis

#i ncl ude "SDL. h"
SDL_Surface *SDL_Di spl ayFor mat Al pha(SDL_Sur f ace *surface);

Description

This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer plus an alpha channel, suitable for fast blitting onto the display surface. It calls
SDL_ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

This function can be used to convert a colourkey to an alpha channel, if the SDL_ SRCCOLORKEY flag
is set on the surface. The generated surface will then be transparent (alpha=0) where the pixels match
the colourkey, and opaque (alpha=255) elsewhere.

Return Value

If the conversion fails or runs out of memory, it returns NULL

See Also
SDL_ConvertSurface, SDL_SetAlpha, SDL_SetColorKey, SDL_DisplayFormat, SDL_Surface

97

SDL_WarpMouse

Name

SDL_War pMouse — Set the position of the mouse cursor.
Synopsis
#i ncl ude "SDL. h"

voi d SDL_War pMouse(Uint16 x, U nt1l6 y);

Description

Set the position of the mouse cursor (generates a mouse motion event).

See Also

SDL_MouseMotionEvent

98

SDL_CreateCursor

Name

SDL_Cr eat eCur sor — Creates a new mouse cursor.
Synopsis

#i ncl ude "SDL. h"
SDL_Cursor *SDL_CreateCursor(U nt8 *data, U nt8 *mask, int w, int h, int
hot _x, int hot_y);

Description

Create a cursor using the specified dat a and mask (in MSB format). The cursor width must be a
multiple of 8 bits.

The cursor is created in black and white according to the following:

Data / Mask Resulting pixel on screen

0/1 \White

1/1 Black

0/0 [Transparent

1/0 Inverted color if possible, black if not.

Cursors created with this function must be freed with SDL_FreeCursor.

Example

/* Stolen fromthe nailing list */
/* Creates a new nouse cursor froman XPM */

[* XPM */

static const char *arrow] = {
/* wi dth height num.col ors chars_per_pixel */
" 32 32 3 1,
/* colors */

99

SDL_CreateCursor

"X ¢ #000000",
".oc #EffffE",
" ¢ None",
/* pixels */

"y
"X X ",
"X X
"X X ",
"X X
"Xo. X ",
"Xeaoo X
"Xeooo. X
"X X ",
"Xe. XXXXX
"X XX ",
XX XX
XX XX ",
"X X. X
" X . X ",
" X.. X ",
" X . X
" XX "
"0, 0"

s

static SDL_Cursor *init_systemcursor(const char *inmage[])
{

int i, row, col;

Ui nt8 data[4*32];

Ui nt8 mask[4*32];

int hot_x, hot_y;

i =-1;

for (row=0; row32; ++row) {
for (col=0; col<32; ++col) {

100

SDL_CreateCursor

if (col %8) {
data[i] <<= 1;
mask[i] <<= 1;
} else {
++i ;
data[i] = mask[i] = O;
}
switch (inmage[4+row][col]) {
case 'X:
dataf[i] |= 0x01;
k[i] | = 0x01;
br eak;
case ’
mask[i] |= 0x01;
br eak;
case ' ':
br eak;
}
}
}
sscanf (i mage[4+row], "%, %d", &hot_x, &hot_y);
return SDL_CreateCursor(data, mask, 32, 32, hot_x, hot_y);

}

See Also

SDL_FreeCursor, SDL_Set Cur sor, SDL_ShowCur sor

101

SDL_FreeCursor

Name

SDL_Fr eeCur sor — Frees a cursor created with SDL_CreateCursor.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_FreeCursor(SDL_Cursor *cursor);

Description

Frees a SDL_Cursor that was created using SDL_CreateCursor.

See Also
SDL_CreateCursor

102

SDL_SetCursor

Name

SDL_ Set Cur sor — Set the currently active mouse cursor.
Synopsis

#i ncl ude "SDL. h"
voi d *SDL_Set Cursor (SDL_Cursor *cursor);

Description

Sets the currently active cursor to the specified one. If the cursor is currently visible, the change will
be immediately represented on the display.

See Also

SDL_Get Cur sor, SDL_Cr eat eCur sor, SDL_ShowCur sor

103

SDL_GetCursor

Name

SDL_ Get Cur sor — Get the currently active mouse cursor.
Synopsis

#i ncl ude "SDL. h"
SDL_Cursor *SDL_Get Cursor (void);

Description

Returns the currently active mouse cursor.

See Also

SDL_Set Cur sor, SDL_Cr eat eCur sor, SDL_ShowCur sor

104

SDL_ShowCursor

Name

SDL_ShowCur sor — Toggle whether or not the cursor is shown on the screen.
Synopsis

#i ncl ude "SDL. h"
int SDL_ShowCursor (int toggle);

Description

Toggle whether or not the cursor is shown on the screen. Passing SDL_ENABLE displays the cursor
and passing SDL_DI SABLE hides it. The current state of the mouse cursor can be queried by passing
SDL_QUERY, either SDL_DI SABLE or SDL_ENABLE will be returned.

The cursor starts off displayed, but can be turned off.

Return Value

Returns the current state of the cursor.

See Also

SDL_Cr eat eCur sor, SDL_Set Cur sor

105

SDL_GL_LoadLibrary

Name
SDL_G._LoadLi br ary — Specify an OpenGL library

Synopsis

#i ncl ude "SDL. h"
int SDL_GL_LoadLi brary(const char *path);

Description

If you wish, you may load the OpenGL library at runtime, this must be done before

SDL_Set Vi deoMbde is called. The pat h of the GL library is passed to SDL_GL_LoadLi brary
and it returns 0 on success, or -1 on an error. You must then use SDL_GL_Get Pr ocAddr ess to
retrieve function pointers to GL functions.

See Also

SDL_GL_Get ProcAddr ess

106

SDL_GL_GetProcAddress

Name
SDL_G._Get Pr ocAddr ess — Get the address of a GL function

Synopsis

#i ncl ude "SDL. h"
voi d *SDL_GL_Get ProcAddr ess(const char* proc);

Description

Returns the address of the GL function pr oc, or NULL if the function is not found. If the GL
library is loaded at runtime, with SDL_GL_LoadLi br ary, then all GL functions must be retrieved
this way. Usually this is used to retrieve function pointers to OpenGL extensions.

Example

t ypedef void (*GL_ActiveTextureARB_Func) (unsigned int);
GL_Acti veText ur eARB_Func gl Acti veTextureARB ptr = O0;
int has_nultitexture=1;

/* Get function pointer */
gl Acti veText ureARB _ptr=(G._Acti veTextureARB Func) SDL_G__Get ProcAddress("gl Acti veText ur eARB'

/* Check for a valid function ptr */

if(!gl ActiveTextureARB ptr){
fprintf(stderr, "Miltitexture Extensions not present.\n");
has_mul ti t ext ure=0;

}

if(has_multitexture){
gl Acti veText ur eARB_ptr (GL_TEXTUREO_ARB) ;

107

el se{

See Also

SDL_GL_LoadLi brary

DL_GL_GetProcAddress

108

SDL_GL_GetAttribute

Name
SDL_G._Get Attri but e — Get the value of a special SDL/OpenGL attribute

Synopsis

#i ncl ude "SDL. h"
int SDL_G._GetAttribute(SDLGattr attr, int *val ue);

Description

Places the value of the SDL/OpenGL attribute at t r into val ue. This is useful after a call to
SDL_Set Vi deoMbde to check whether your attributes have been set as you expected.

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_GL_Set Attri but e, GL Attributes

109

SDL_GL_SetAttribute

Name
SDL_G._Set Attri but e — Set a special SDL/OpenGL attribute

Synopsis

#i ncl ude "SDL. h"
int SDL_G._SetAttribute(SDL_G.attr attr, int value);

Description

Sets the OpenGL attribute at t r to val ue. The attributes you set don’t take effect until after a call
to SDL_Set Vi deoMbde. You should use SDL_G._Get At t ri but e to check the values after a
SDL_Set Vi deoMode call.

Return Value

Returns 0 on success, or -1 on error.

Example

SDL_GL_SetAttribute(SDL_G.L_RED SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_GREEN SIZE, 5);

SDL_GL_SetAttribute(SDL_G._BLUE SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_DEPTH SIZE, 16);

SDL_GL_SetAttribute(SDL_G. DOUBLEBUFFER, 1);

if ((screen=SDL_Set Vi deoMbde(640, 480, 16, SDL_OPENG.)) == NULL) {
fprintf(stderr, "Couldn’t set GL node: %\n", SDL_GetError());
SDL_Qui t();
return;

Note: The SDL_DOUBLEBUF flag is not required to enable double buffering when setting an
OpenGL video mode. Double buffering is enabled or disabled using the
SDL_GL_DOUBLEBUFFER attribute.

110

SDL_GL_SetAttribute

See Also

SDL_GL_Get Attri but e, GL Attributes

111

SDL_GL_SwapBuffers

Name
SDL_G._SwapBuf f er s — Swap OpenGL framebuffers/Update Display

Synopsis

#i ncl ude "SDL. h"
void SDL_G._SwapBuffers(void);

Description
Swap the OpenGL buffers, if double-buffering is supported.

See Also

SDL_Set Vi deoMbde, SDL_G__Set Attri bute

112

SDL_CreateYUVOverlay

Name
SDL_Cr eat eYUVOver | ay — Create a YUV video overlay

Synopsis

#i ncl ude "SDL. h"
SDL_Overlay *SDL_CreateYUVOverl ay(int width, int height, U nt32 format,
SDL_Surface *display);

Description

SDL_Cr eat eYUWOver | ay creates a YUV overlay of the specified wi dt h, hei ght and f or mat
(see SDL_Overlay for a list of available formats), for the provided di spl ay. A SDL_Overlay
structure is returned.

The term “overlay’ is a misnomer since, unless the overlay is created in hardware, the contents for
the display surface underneath the area where the overlay is shown will be overwritten when the
overlay is displayed.

See Also

SDL_Overlay, SDL_Di spl ayYWOver | ay, SDL_Fr eeYUVOver | ay

113

SDL_LockYUVOverlay

Name
SDL_LockYUWVOver | ay — Lock an overlay

Synopsis

#i ncl ude "SDL. h"
int SDL_LockYUVOverl ay(SDL_COverl ay *overl ay);

Description

Much the same as SDL_LockSur f ace, SDL_LockYUVOver | ay locks the over | ay for direct
access to pixel data.

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_Unl ockYUVOver | ay, SDL_Cr eat eYUVOver | ay, SDL_Overlay

114

SDL_UnlockYUVOverlay

Name
SDL_Unl ockYUVOver | ay — Unlock an overlay

Synopsis

#i ncl ude "SDL. h"
voi d SDL_Unl ockYUVOver | ay(SDL_Overl ay *overl ay);

Description

The opposite to SDL_LockYWVOver | ay. Unlocks a previously locked overlay. An overlay must be
unlocked before it can be displayed.

See Also

SDL_Unl ockYWOver | ay, SDL_Cr eat eYUVOver | ay, SDL_Overlay

115

SDL_DisplayYUVOverlay

Name
SDL_Di spl ayYUVOver | ay — Blit the overlay to the display

Synopsis

#i ncl ude "SDL. h"
int SDL_Di spl ayYUVOverl ay(SDL_Overl ay *overlay, SDL_Rect *dstrect);

Description

Blit the over | ay to the surface specified when it was created. The SDL_Rect structure, dst r ect
specifies the position and size of the destination. If the dst r ect is a larger or smaller than the
overlay then the overlay will be scaled, this is optimized for 2x scaling.

See Also

SDL_Overlay, SDL_Cr eat eYWOver | ay

116

SDL_FreeYUVOverlay

Name
SDL_FreeYUWOver | ay — Free a YUV video overlay

Synopsis

#i ncl ude "SDL. h"
voi d SDL_FreeYUVOver!| ay(SDL_Overl ay *overl ay);

Description

Frees and over | ay created by SDL_Cr eat eYUVOver | ay.

See Also

SDL_Overlay, SDL_Di spl ayYWOver | ay, SDL_Fr eeYUVOver | ay

117

SDL_GLattr

Name

SDL_G.attr — SDL GL Attributes

Attributes

SDL_GL_RED SI ZE
SDL_GL_GREEN_ S| ZE
SDL_GL_BLUE_SI ZE
SDL_GL_ALPHA SI ZE
SDL_GL_DOUBLEBUFFER
SDL_GL_BUFFER S| ZE
SDL_GL_DEPTH_SI ZE
SDL_GL_STENCI L_SI ZE
SDL_GL_ACCUM RED SI ZE

SDL_GL_ACCUM GREEN_S| ZE
SDL_GL_ACCUM BLUE_SI ZE

SDL_GL_ACCUM ALPHA_SI ZE

Description

Size of the framebuffer red component, in bits
Size of the framebuffer green component, in bits
Size of the framebuffer blue component, in bits
Size of the framebuffer alpha component, in bits
0 or 1, enable or disable double buffering

Size of the framebuffer, in bits

Size of the depth buffer, in bits

Size of the stencil buffer, in bits

Size of the accumulation buffer red component, in
bits

Size of the accumulation buffer green component,
in bits

Size of the accumulation buffer blue component,
in bits

Size of the accumulation buffer alpha component,
in bits

While you can set most OpenGL attributes normally, the attributes list above must be known before
SDL sets the video mode. These attributes a set and read with SDL_G._Set At t ri but e and

SDL_GL_GetAttri bute.

See Also

SDL_G._SetAttribute,SDL_G_GetAttribute

118

SDL_Rect

Name

SDL_Rect — Defines a rectangular area

Structure Definition
t ypedef struct{
Sintl6 x, vy;

Untlé w, h;
} SDL_Rect;

Structure Data

y Position of the upper-left corner of the rectangle
h

X,
w, The width and height of the rectangle

Description

A SDL_Rect defines a rectangular area of pixels. It is used by SDL_BI i t Sur f ace to define blitting
regions and by several other video functions.

See Also

SDL_BlitSurface, SDL_Updat eRect

119

SDL_Color

Name

SDL_ Col or — Format independent color description

Structure Definition

typedef struct{
unt8 r;
unt8 g;
Ui nt8 b;
U nt 8 unused;
} SDL_Col or;

Structure Data

r Red intensity

g Green intensity
b Blue intensity
unused Unused
Description

SDL_Color describes a color in a format independent way. You can convert a SDL_Color to a pixel
value for a certain pixel format using SDL_MapRGB.

See Also

SDL_PixelFormat, SDL_Set Col ors, SDL_Pal ette

120

SDL_Palette

Name

SDL_Pal et t e — Color palette for 8-bit pixel formats

Structure Definition

typedef struct{
int ncolors;
SDL_Col or *col ors;
} SDL_Pal ette;

Structure Data

ncol ors Number of colors used in this palette

col ors Pointer to SDL_Color structures that make up the
palette.

Description

Each pixel in an 8-bit surface is an index into the col or s field of the SDL_Palette structure store in
SDL_PixelFormat. A SDL_Palette should never need to be created manually. It is automatically
created when SDL allocates a SDL_PixelFormat for a surface. The colors values of a SDL_Surfaces
palette can be set with the SDL_Set Col or s.

See Also

SDL_Color, SDL_Surface, SDL_Set Col ors SDL_Set Pal et te

121

SDL_PixelFormat

Name

SDL_Pi xel For mat — Stores surface format information

Structure Definition

typedef struct{

SDL_Pal ette *pal ette;
U nt8 BitsPerPixel;

U nt8 BytesPerPixel;
U nt 32 Rmask, Grask, Bmask, Amask;
Unt8 Rshift, Gshift,
Unt8 R oss, doss,

Ui nt 32 col orkey;
U nt8 al pha;
} SDL_Pi xel For mat ;

Structure Data
pal ette

Bi t sPer Pi xel

Byt esPer Pi xel

[RGBA] mask

[RGBA] | 0ss

[RGBA] shi ft

col orkey
al pha

Description

Ashi ft;

Pointer to the palette, or NULL if the
Bi t sPer Pi xel >8

The number of bits used to represent each pixel in
a surface. Usually 8, 16, 24 or 32.

The number of bytes used to represent each pixel
in a surface. Usually one to four.

Binary mask used to retrieve individual color
values

Precision loss of each color component (2[rceajioss)

Binary left shift of each color component in the
pixel value

Pixel value of transparent pixels
Overall surface alpha value

A SDL_PixelFormat describes the format of the pixel data stored at the pi xel s field of a

122

SDL_PixelFormat

SDL_Surface. Every surface stores a SDL_PixelFormat in the f or mat field.

If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color
information is essential.

8-bit pixel formats are the easiest to understand. Since its an 8-bit format, we have 8

Bi t sPer Pi xel and 1 Byt esPer Pi xel . Since Byt esPer Pi xel is 1, all pixels are
represented by a Uint8 which contains an index into pal et t e->col or s. So, to determine the
color of a pixel in a 8-bit surface: we read the color index from surface->pi xel s and we use that
index to read the SDL_Color structure from surface->f or mat ->pal et t e->col or s. Like so:

SDL_Surface *surface;
SDL_Pi xel Format *fnt;
SDL_Col or *col or;

Ui nt 8 i ndex;

/* Create surface */

fnt =surface->f or mat ;

/* Check the bitdepth of the surface */

i f(fnt->BitsPerPixel!=8){
fprintf(stderr, "Not an 8-bit surface.\n");
return(-1);

}

/* Lock the surface */
SDL_LockSurface(surface);

/* Get the topleft pixel */
i ndex=*(Ui nt8 *)surface->pi xel s;
col or=fnt - >pal ett e->col ors[i ndex];

/* Unl ock the surface */

SDL_Unl ockSur f ace(surface);

printf("Pixel Color-> Red: %, Geen: %, Blue: %l. I|ndex: %l\n",
color->r, color->g, color->b, index);

Pixel formats above 8-bit are an entirely different experience. They are considered to be "TrueColor"
formats and the color information is stored in the pixels themselves, not in a palette. The mask, shift
and loss fields tell us how the color information is encoded. The mask fields allow us to isolate each

color component, the shift fields tell us the number of bits to the right of each component in the pixel

123

SDL_PixelFormat

value and the loss fields tell us the number of bits lost from each component when packing 8-bit

color component in a pixel.

/* Extracting color conponents froma 32-bit color value */

SDL_Pi xel Format *fnt;
SDL_Surface *surface;
U nt32 tenmp, pixel;

U nt8 red, green, blue,

fnt =sur face->f or mat ;
SDL_LockSurface(surface);

al pha;

pi xel =* ((Ui nt 32*) sur f ace- >pi xel s);
SDL_Unl ockSur f ace(surface);

/* Get Red conmponent */

t enp=pi xel &f nt - >Rmask; /*
t enp=t enp>>fnt - >Rshi ft;/*
tenp=t enp<<fnt->Rl oss; /*
red=(Ui nt 8) t enp;

*/
/*
/*
/*

/* Get Green conponent
t enp=pi xel & nt - >Grask;
t enp=t enp>>f nt - >Gshi ft;
t enp=t enp<<f nt - >3 oss;
green=(Ui nt 8)tenp;

/* Get Blue conponent */
t enp=pi xel &f nt - >Bmask; /*
t enp=t enp>>fnt - >Bshi ft;/*
t enp=t enp<<fnt->Bl oss; /*
bl ue=(U nt 8) t enp;

/* Get Al pha conponent */
t enp=pi xel &f nt - >Amask; /*
t enp=t enp>>f nt - >Ashi ft;/*
t enp=t enp<<fnt - >Al oss; /*
al pha=(Ui nt 8) t enp;

printf("Pixel Color -> R

I sol ate red conmponent */
Shift it down to 8-bit */
Expand to a full 8-bit nunber

| sol ate green component */
Shift it down to 8-bit */
Expand to a full 8-bit nunber

*/
*/
nunber

I sol ate bl ue conponent
Shift it down to 8-bit
Expand to a full 8-bit

I sol ate al pha conponent */

Shift it down to 8-bit */
Expand to a full 8-bit nunber
%W, G %, B %, A %l\n",

*/

*/

*/

*/

red, green, blue,

124

al pha) ;

SDL_PixelFormat

See Also

SDL_Surface, SDL_MapRGB

125

SDL_Surface

Name

SDL_ Sur f ace — Graphical Surface Structure

Structure Definition

typedef struct SDL_Surface {

Ui nt32 flags; /* Read-only */
SDL_Pi xel Format *for mat; /* Read-only */
int w, h; /* Read-only */
Ui nt16 pitch; /* Read-only */
voi d *pi xel s; /* Read-write */

/* clipping information */

SDL_Rect clip_rect; /* Read-only */
/* Reference count -- used when freeing surface */
int refcount; /* Read-nostly */

/* This structure also contains private fields not shown here */
} SDL_Surface;

Structure Data

fl ags Surface flags

f or mat Pixel format

w, h Width and height of the surface
pitch Length of a surface scanline in bytes
pi xel s Pointer to the actual pixel data
clip_rect surface clip rectangle
Description

SDL_Surface’s represent areas of "graphical” memory, memory that can be drawn to. The video
framebuffer is returned as a SDL_Surface by SDL_Set Vi deoMode and SDL_Get Vi deoSur f ace.
Most of the fields should be pretty obvious. w and h are the width and height of the surface in pixels.
pi xel s is a pointer to the actual pixel data, the surface should be locked before accessing this field.
Thecl i p_rect field is the clipping rectangle as set by SDL_Set Cl i pRect.

126

The following are supported in the f | ags field.

SDL_Surface

SDL_ SWSURFACE

Surface is stored in system memory

SDL_ HASURFACE

Surface is stored in video memory

SDL_ASYNCBLI T

Surface uses asynchronous blits if possible

SDL_ ANYFORNVAT

Allows any pixel-format (Display surface)

SDL_HWPALETTE

Surface has exclusive palette

SDL_ DOUBL EBUF

Surface is double buffered (Display surface)

SDL_FULLSCREEN

Surface is full screen (Display Surface)

SDL_OPENGL

Surface has an OpenGL context (Display Surface)

SDL_OPENGLBLI T

Surface supports OpenGL blitting (Display
Surface)

SDL_RESI ZABLE

Surface is resizable (Display Surface)

SDL_ HWACCEL Surface blit uses hardware acceleration
SDL_ SRCCOLORKEY Surface use colorkey blitting
SDL_ RLEACCEL Colorkey blitting is accelerated with RLE

SDL_ SRCALPHA

Surface blit uses alpha blending

SDL_PREALLOC

Surface uses preallocated memory

See Also
SDL_PixelFormat

127

SDL_Videolnfo

Name

SDL_ Vi deol nf o — Video Target information

Structure Definition

t ypedef struct{

U nt32 hw_avail abl e: 1;
U nt32 wm avail abl e: 1;
Unt32 blit_hw 1;

U nt32 blit_hw CC 1;
Unt32 blit_hw A 1;
Unt32 blit_sw 1;
Unt32 blit_sw CC 1;
Unt32 blit_sw A:1;
Unt32 blit_fill;

Ui nt 32 video_nmem

SDL_Pi xel Format *vfnt;
} SDL_Videol nf o;

Structure Data

hw_avai | abl e
wm avai | abl e

blit_hw
blit_hw CC
blit_hw A
blit_sw
blit_sw CC
blit_sw A
blit fill
vi deo_nmem
vim

Is it possible to create hardware surfaces?
Is there a window manager available
Are hardware to hardware blits accelerated?

Are hardware to hardware colorkey blits
accelerated?

Are hardware to hardware alpha blits accelerated?
Are software to hardware blits accelerated?

Avre software to hardware colorkey blits
accelerated?

Avre software to hardware alpha blits accelerated?
Avre color fills accelerated?

Total amount of video memory in Kilobytes
Pixel format of the video device

128

SDL_Videolnfo

Description

This (read-only) structure is returned by SDL_Get Vi deol nf o. It contains information on either the
"best” available mode (if called before SDL_Set Vi deoMbde) or the current video mode.

See Also

SDL_PixelFormat, SDL_Get Vi deol nf o

129

SDL_Overlay

Name
SDL_Over |l ay — YUV video overlay

Structure Definition

t ypedef struct{

U nt32 format;

int w, h;

int planes;

Ui nt16 *pitches;

U nt8 **pixels;

U nt32 hw_ overl ay: 1;
} SDL_Overl ay;

Structure Data
f or mat

w, h

pl anes

pi t ches

pi xel s

hw _over| ay

Description

Overlay format (see below)

Width and height of overlay

Number of planes in the overlay. Usually either 1
or3

An array of pitches, one for each plane. Pitch is
the length of a row in bytes.

An array of pointers to teh data of each plane. The
overlay should be locked before these pointers are
used.

This will be set to 1 if the overlay is hardware
accelerated.

A SDL_Overlay is similar to a SDL_Surface except it stores a YUV overlay. All the fields are read
only, except for pi xel s which should be locked before use. The f or mat field stores the format of

the overlay which is one of the following:

#define SDL_YV12_OVERLAY 0x32315659
#define SDL_| YUV_OVERLAY 0x56555949
#defi ne SDL_YUY2_OVERLAY 0x32595559

/* Planar node: Y + V + U */
/* Planar node: Y + U+ V */
/* Packed nopde: YO+UO+Y1+VO */

130

DL _Overlay

#define SDL_UYVY_OVERLAY 0x59565955 /* Packed node: U0+YO+VO+Y1l */
#define SDL_YVYU OVERLAY 0x55595659 /* Packed node: YO+VO+Y1+UO */

More information on YUV formats can be found at http://www.webartz.com/fourcc/indexyuv.htm.

See Also

SDL_Cr eat eYUVOver | ay, SDL_LockYUVOver | ay, SDL_Unl ockYUVOver | ay,
SDL_FreeYWOver | ay

131

Chapter 7. Window Management

SDL provides a small set of window management functions which allow applications to change their
title and toggle from windowed mode to fullscreen (if available)

SDL_WM_SetCaption

Name

SDL_WM Set Capt i on — Sets the window tile and icon name.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_WM Set Caption(const char *title, const char *icon);

Description

Sets the title-bar and icon name of the display window.

See Also

SDL_WM Get Capti on, SDL_WM Set | con

132

SDL_WM_GetCaption

Name

SDL_WM Get Capt i on — Gets the window title and icon name.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_WM Get Caption(char **title, char **icon);

Description

Set pointers to the window ti t | e andi con name.

See Also

SDL_WM Set Capti on, SDL_WM Set | con

133

SDL_WM_Setlcon

Name

SDL_WM Set | con — Sets the icon for the display window.
Synopsis

#i ncl ude "SDL. h"
void SDL_WM Set | con(SDL_Surface *icon, Ui nt8 *mask);

Description

Sets the icon for the display window.
This function must be called before the first call to SDL_SetVideoMode.
It takes an i con surface, and a mask in MSB format.

If mask is NULL, the entire icon surface will be used as the icon.

Example

SDL_WM Set | con(SDL_LoadBMP("i con. bnp"), NULL);

See Also

SDL_Set Vi deoMbde, SDL_WM Set Capt i on

134

SDL_WM_IconifyWindow

Name
SDL_WM I coni f yW ndow— Iconify/Minimise the window

Synopsis

#i ncl ude "SDL. h"
int SDL_WM | coni f yW ndow(voi d) ;

Description

If the application is running in a window managed environment SDL attempts to iconify/minimise it.
If SDL_WM | coni f yW ndowis successful, the application will receive a SDL_APPACTI VE loss
event.

Return Value

Returns non-zero on success or 0 if iconification is not support or was refused by the window
manager.

135

SDL_WM_ToggleFullScreen

Name
SDL_WM Toggl eFul | Scr een — Toggles fullscreen mode

Synopsis
#i ncl ude "SDL. h"

int SDL_WM Toggl eFul | Screen(SDL_Sur f ace *surface);

Description

Toggles the application between windowed and fullscreen mode, if supported. (X11 is the only target
currently supported, BeOS support is experimental).

Return Value

Returns 0 on failure or 1 on success.

136

SDL_WM_Grablinput

Name
SDL_WM Gr abl nput — Grabs mouse and keyboard input.

Synopsis

#i ncl ude "SDL. h"
SDL_GrabMbde SDL_WM Gr abl nput (SDL_Gr abMbde node) ;

Description

Grabbing means that the mouse is confined to the application window, and nearly all keyboard input
is passed directly to the application, and not interpreted by a window manager, if any.

When node is SDL_GRAB_QUERY the grab mode is not changed, but the current grab mode is
returned.

t ypedef enum {
SDL_GRAB_QUERY,
SDL_GRAB_OFF,
SDL_GRAB_ON

} SDL_GrabMode;

Return Value
The current/new SDL_GrabMode.

137

Chapter 8. Events

Introduction

Event handling allows your application to receive input from the user. Event handling is initalised
(along with video) with a call to:

SDL_Init(SDL_I NI T_VI DEO);

Interally, SDL stores all the events waiting to be handled in an event queue. Using functions like
SDL_Pol | Event and SDL_PeepEvent s you can observe and handle waiting input events.

The key to event handling in SDL is the SDL_Event union. The event queue itself is composed of a
series of SDL_Event unions, one for each waiting event. SDL_Event unions are read from the queue
with the SDL_Pol | Event function and it is then up to the application to process the information
stored with them.

SDL Event Structures.

SDL_Event

Name

SDL_Event — General event structure

Structure Definition

t ypedef uni on{
Ui nt8 type;
SDL_Acti veEvent acti ve;
SDL_Keyboar dEvent key;
SDL_MouseMbti onEvent noti on;
SDL_MouseBut t onEvent butt on;
SDL_JoyAxi sEvent jaxis;
SDL_JoyBal | Event j bal | ;
SDL_JoyHat Event j hat;
SDL_JoyButt onEvent j button;
SDL_Resi zeEvent resi ze;
SDL_QuitEvent quit;

138

SDL_User Event user;
SDL_SywMWEvent syswn
} SDL_Event;

Structure Data

type
active
key
noti on
button
jaxis
j bal |

j hat

j button
resize
quit
user
syswm

Description

SDL_Event

The type of event

Activation event

Keyboard event

Mouse motion event

Mouse button event

Joystick axis motion event
Joystick trackball motion event
Joystick hat motion event
Joystick button event
Application window resize event
Application quit request event
User defined event

Undefined window manager event

The SDL_Event union is the core to all event handling is SDL, its probably the most important
structure after SDL_Surface. SDL_Event is a union of all event structures used in SDL, using it is a
simple matter of knowing which union member relates to which event t ype.

Eventtype

Event Structure

SDL_ACTI VEEVENT

SDL_ActiveEvent

SDL_ KEYDOWN/ UP

SDL_KeyboardEvent

SDL_ MOUSEMOTI ON

SDL_MouseMotionEvent

SDL_ MOUSEBUT TONDOWN/ UP

SDL_MouseButtonEvent

SDL_JOYAXI SMOTI ON

SDL_JoyAxisEvent

SDL_JOYBALLMOTI ON

SDL_JoyBallEvent

SDL_JOYHATMOTI ON

SDL_JoyHatEvent

SDL_JOYBUTTONDOVWN UP

SDL_JoyButtonEvent

SDL_QUI T

SDL_QuitEvent

139

SDL_Event

Eventt ype Event Structure
SDL_ SYSWWEVENT SDL_SysWMEvent
SDL_ VI DEORESI ZE SDL_ResizeEvent
SDL_ USEREVENT SDL_UserEvent
Use

The SDL_Event structure has two uses

- Reading events on the event queue
« Placing events on the event queue

Reading events from the event queue is done with either SDL_Pol | Event or SDL_PeepEvent s.
We’ll use SDL_Pol | Event and step through an example.

First off, we create an empty SDL_Event structure.
SDL_Event test_event;

SDL_Pol | Event removes the next event from the event queue, if there are no events on the queue it
returns O otherwise it returns 1. We use a whi | e loop to process each event in turn.

whi | e(SDL_Pol | Event (& est _event)) {

The SDL_Pol | Event function take a pointer to an SDL_Event structure that is to be filled with
event information. We know that if SDL_Pol | Event removes an event from the queue then the
event information will be placed in our test_event structure, but we also know that the type of event
will be placed in the t ype member of test_event. So to handle each event t ype seperately we use a
swi t ch statement.

switch(test_event.type) {

We need to know what kind of events we’re looking for and the event t ype’s of those events. So
lets assume we want to detect where the user is moving the mouse pointer within our application. We
look through our event types and notice that SDL_MOUSEMOTI ONis, more than likely, the event we’re
looking for. A little more research tells use that SDL_ MOUSEMOTI ON events are handled within the
SDL_MouseMotionEvent structure which is the not i on member of SDL_Event. We can check for
the SDL_ MOUSEMOTI ONeventt ype within our swi t ch statement like so:

case SDL_MOUSEMOTI ON:
All we need do now is read the information out of the mot i on member of test_event.

printf("We got a notion event.\n");

140

SDL_Event

printf("Current nouse positionis: (%, %l)\n", test_event.notion.x, test_event.notior
br eak;
def aul t:
printf("Unhandl ed Event!\n");
br eak;

}

}
printf("Event queue enpty.\n");

It is also possible to push events onto the event queue and so use it as a two-way communication
path. Both SDL_PushEvent and SDL_PeepEvent s allow you to place events onto the event queue.
This is usually used to place a SDL_USEREVENT on the event queue, however you could use it to post
fake input events if you wished. Creating your own events is a simple matter of choosing the event
type you want, setting the t ype member and filling the appropriate member structure with
information.

SDL_Event user_event;

user _event.type=SDL_USEREVENT;
user _event. user. code=2;

user _event . user. dat al=NULL;

user _event . user. dat a2=NULL;
SDL_PushEvent (&user _event);

See Also

SDL_Pol | Event, SDL_PushEvent , SDL_PeepEvent s

141

SDL_ActiveEvent

Name

SDL_Act i veEvent — Application visibility event structure

Structure Definition

typedef struct{
Ui nt8 type;
Ui nt8 gain;
U nt8 state;
} SDL_ActiveEvent;

Structure Data
type

gain
state

Description

SDL_ACTI VEEVENT.

0 if the eventis aloss or 1 if it is a gain.

SDL_ APPMOUSEFOCUS if mouse focus was gained
or lost, SDL_APPI NPUTFOCUS if input focus was
gained or lost, or SDL_APPACTI VE if the
application was iconified (gai n=0) or
restored(gai n=1).

SDL_ActiveEvent is a member of the SDL_Event union and is used when an event of type

SDL_ACTI VEEVENT is reported.

When the mouse leaves or enters the window area a SDL_ APPMOUSEFQCUS type activation event
occurs, if the mouse entered the window then gai n will be 1, otherwise gai n will be 0. A
SDL_APPI NPUTFOCUS type activation event occurs when the application loses or gains keyboard
focus. This usually occurs when another application is made active. Finally, a SDL_APPACTI VE type
event occurs when the application is either minimised/iconified (gai n=0) or restored.

Note: This event does not occur when an application window is first created.

142

SDL_ActiveEvent

See Also

SDL_Event, SDL_GCet AppSt at e

143

SDL_KeyboardEvent

Name

SDL_Keyboar dEvent — Keyboard event structure

Structure Definition

t ypedef struct{
Ui nt8 type;
U nt8 state;
SDL_keysym keysym
} SDL_Keyboar dEvent;

Structure Data

type SDL_KEYDOAN of SDL_KEYUP
state SDL_PRESSED or SDL_RELEASED
keysym Contains key press information
Description

SDL_KeyboardEvent is a member of the SDL_Event union and is used when an event of type
SDL_KEYDOWN or SDL_KEYUP is reported.

The t ype and st at e actually report the same information, they just use different values to do it! A
keyboard event occurs when a key is released (t ype=SDK_KEYUP or st at e=SDL_RELEASED) and

when a key is pressed (t ype=SDL_KEYDOWNor st at e=SDL_PRESSED). The information on what

key was pressed or released is in the keysym structure.

Note: Repeating SDL_KEYDOWN events will occur if key repeat is enabled (see
SDL_Enabl eKeyRepeat).

See Also

SDL_Event, SDL_keysym, SDL_Enabl eKeyRepeat , SDL_Enabl eUNI CODE

144

SDL_MouseMotionEvent

Name

SDL_MbuselMbt i onEvent — Mouse motion event structure

Structure Definition

typedef struct{
Ui nt8 type;
U nt8 state;
Untlé x, vy;
Sint16 xrel, yrel;
} SDL_MouselMbti onEvent;

Structure Data

type SDL_ MOUSEMOTI ON
state The current button state

X,y The X/Y coordinates of the mouse
xrel,yrel Relative motion in the X/Y direction
Description

SDL_MouseMotionEvent is a member of the SDL_Event union and is used when an event of type
SDL_ MOUSEMOTI ONiis reported.

Simply put, a SDL_MOUSEMOTI ONtype event occurs when a user moves the mouse within the
application window or when SDL_War pMouse is called. Both the absolute (x and y) and relative
(xrel andyr el) coordinates are reported along with the current button states (st at e). The button
state can be interpreted using the SDL_BUTTON macro (see SDL_Get MouseSt at e).

If the cursor is hidden (SDL_ShowCur sor (0)) and the input is grabbed

(SDL_WM_Gr abl nput (SDL_GRAB_ON)), then the mouse will give relative motion events even
when the cursor reaches the edge fo the screen. This is currently only implemented on Windows and
Linux/Unix-a-likes.

See Also

145

SDL_MouseMotionEvent

SDL_Event, SDL_MouseButtonEvent

146

SDL_MouseButtonEvent

Name

SDL_MbuseBut t onEvent — Mouse button event structure

Structure Definition

t ypedef struct{
Ui nt8 type;
U nt8 button;
U nt8 state;
Untlé x, vy;
} SDL_MouseButt onEvent;

Structure Data

type SDL_ MOUSEBUT TONDOWN or
SDL_ MOUSEBUT TONUP
button The mouse button index (SDL_BUTTON_LEFT,

SDL_BUTTON_MIDDLE,
SDL_BUTTON_RIGHT)

state SDL_PRESSED or SDL_RELEASED

X,y The X/Y coordinates of the mouse at press/release
time

Description

SDL_MouseButtonEvent is a member of the SDL_Event union and is used when an event of type
SDL_ MOUSEBUTTONDOWN or SDL_ MOUSEBUTTONUP is reported.

When a mouse button press or release is detected then number of the button pressed (from 1 to 255,
with 1 usually being the left button and 2 the right) is placed into but t on, the position of the mouse
when this event occured is stored in the x and the y fields. Like SDL_KeyboardEvent, information
on whether the event was a press or a release event is stored in both the t ype and st at e fields, but
this should be obvious.

See Also

147

SDL_MouseButtonEvent

SDL_Event, SDL_MouseMotionEvent

148

SDL_JoyAxisEvent

Name

SDL_JoyAxi sEvent — Joystick axis motion event structure

Structure Definition

typedef struct{
Ui nt8 type;
Ui nt 8 whi ch;
U nt8 axis;
Sint 16 val ue;
} SDL_JoyAxi sEvent;

Structure Data

type SDL_JOYAXI SMOTI ON
whi ch Joystick device index

axi s Joystick axis index

val ue Axis value (range: -32768 to 32767)
Description

SDL_JoyAxisEvent is a member of the SDL_Event union and is used when an event of type
SDL_JOYAXI SMOTI ON s reported.

A SDL_JOYAXI SMOTI ON event occurs when ever a user moves an axis on the joystick. The field
whi ch is the index of the joystick that reported the event and axi s is the index of the axis (for a
more detailed explaination see the Joystick section). val ue is the current position of the axis.

See Also

SDL_Event, Joystick Functions, SDL_Joyst i ckEvent St at e, SDL_Joyst i ckGet Axi s

149

SDL_JoyButtonEvent

Name

SDL_JoyBut t onEvent — Joystick button event structure

Structure Definition

t ypedef struct{
Ui nt8 type;
Ui nt 8 whi ch;
Ui nt8 button;
U nt8 state;
} SDL_JoyButtonEvent;

Structure Data

type SDL_JOYBUTTONDOMN or SDL_JOYBUTTONUP
whi ch Joystick device index

button Joystick button index

state SDL_PRESSED or SDL_ RELEASED
Description

SDL_JoyButtonEvent is a member of the SDL_Event union and is used when an event of type
SDL_JOYBUTTONDOWN or SDL_JOYBUTTONUP is reported.

A SDL_JOYBUTTONDOWN or SDL_JOYBUTTONUP event occurs when ever a user presses or releases a
button on a joystick. The field whi ch is the index of the joystick that reported the event and

but t on is the index of the button (for a more detailed explaination see the Joystick section).

st at e is the current state or the button which is either SDL_PRESSED or SDL_ REL EASED.

See Also

SDL_Event, Joystick Functions, SDL_Joyst i ckEvent St at e, SDL_Joyst i ckGet Butt on

150

SDL_JoyHatEvent

Name

SDL_JoyHat Event — Joystick hat position change event structure

Structure Definition

t ypedef struct{
Ui nt8 type;
Ui nt 8 whi ch;
Ui nt8 hat;
Ui nt 8 val ue;
} SDL_JoyHat Event;

Structure Data

type SDL_JOY
whi ch Joystick device index
hat Joystick hat index
val ue Hat position
Description

SDL_JoyHatEvent is a member of the SDL_Event union and is used when an event of type
SDL_JOYHATMOTI ONis reported.

A SDL_JOYHATMOTI ON event occurs when ever a user moves a hat on the joystick. The field whi ch
is the index of the joystick that reported the event and hat is the index of the hat (for a more detailed
exlaination see the Joystick section). val ue is the current position of the hat. It is a logically OR’d
combination of the following values (whose meanings should be pretty obvious:) :

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RI GHT
SDL_HAT_DOWN
SDL_HAT_LEFT

The following defines are also provided:

SDL_HAT_RI GHTUP

151

SDL_JoyHatEvent

SDL_HAT_RI GHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also

SDL_Event, Joystick Functions, SDL_Joyst i ckEvent St at e, SDL_Joyst i ckGet Hat

152

SDL_JoyBallEvent

Name

SDL_JoyBal | Event — Joystick trackball motion event structure

Structure Definition

typedef struct{

Ui nt8 type;

Ui nt 8 whi ch;

Uint8 ball;

Sint16 xrel, yrel;
} SDL_JoyBal | Event;

Structure Data

type SDL_JOYBALLMOTI ON
whi ch Joystick device index

bal | Joystick trackball index

xrel,yrel The relative motion in the X/Y direction
Description

SDL_JoyBallEvent is a member of the SDL_Event union and is used when an event of type
SDL_JOYBALLMOTI ONis reported.

A SDL_JOYBALLMOTI ONevent occurs when a user moves a trackball on the joystick. The field

whi ch is the index of the joystick that reported the event and bal | is the index of the trackball (for
a more detailed explaination see the Joystick section). Trackballs only return relative motion, this is
the change in position on the ball since it was last polled (last cycle of the event loop) and it is stored
inxrel andyrel.

See Also

SDL_Event, Joystick Functions, SDL_Joyst i ckEvent St at e, SDL_Joyst i ckGet Bal |

153

SDL_ResizeEvent

Name

SDL_Resi zeEvent — Window resize event structure

Structure Definition

typedef struct{
Ui nt8 type;
int w h;
} SDL_Resi zeEvent;

Structure Data

type SDL_VI DEORESI ZE
w, h New width and height of the window
Description

SDL_ResizeEvent is a member of the SDL_Event union and is used when an event of type
SDL_VI DECRESI ZE is reported.

When SDL_RESI ZABLE is passed as a f | ag to SDL_Set Vi deoMode the user is allowed to resize
the applications window. When the window is resized an SDL_VI DEORESI ZE is report, with the new
window width and height values stored in w and h, respectively. When an SDL_VI DEORESI ZE is
recieved the window should be resized to the new dimensions using SDL_Set Vi deoMbde.

See Also

SDL_Event, SDL_Set Vi deoMbde

154

SDL_SysWMEvent

Name

SDL_SysWVEvent — Platform-dependent window manager event.

Description

The system window manager event contains a pointer to system-specific information about unknown
window manager events. If you enable this event using SDL_Event St at e() , it will be generated
whenever unhandled events are received from the window manager. This can be used, for example,
to implement cut-and-paste in your application.

typedef struct {
Uint8 type; /* Al ways SDL_SysWu */
} SDL_SysWvEvent ;

If you want to obtain system-specific information about the window manager, you can fill the version
member of a SDL_SysWMuinfo structure (details can be found in SDL_syswm h, which must be
included) using the SDL_VERSI ON() macro found in SDL_ver si on. h, and pass it to the function:

int SDL_Get WM nf o(SDL_SysWM nfo *info);

See Also

SDL_Event St at e

155

SDL_UserEvent

Name

SDL_User Event — A user-defined event type

Structure Definition

typedef struct{
Ui nt8 type;
int code;
voi d *dat al;
voi d *dat a2;

} SDL_User Event;

Structure Data

type
code
dat al
dat a2

Description

SDL_USEREVENT through to SDL_NUMEVENTS- 1
User defined event code

User defined data pointer

User defined data pointer

SDL_UserEvent s in the user member of the structure SDL_Event. This event is unique, it is never
created by SDL but only by the user. The event can be pushed onto the event queue using
SDL_PushEvent . The contents of the structure members or completely up to the programmer, the
only requirement is that t ype is a value from SDL_USEREVENT to SDL_NUMEVENTS- 1 (inclusive).

Examples

SDL_Event event;

event.type = SDL_USEREVENT,;

event . user.code = ny_event _code;
event . user.datal = significant_data;
event . user.data2 = 0O;

SDL_PushEvent (&event) ;

156

SDL_UserEvent

See Also

SDL_Event, SDL_PushEvent

157

SDL_QuitEvent

Name

SDL_Qui t Event — Quit requested event

Structure Definition

t ypedef struct{
U nt8 type
} SDL_QuitEvent;

Structure Data

type SDL_QUIT
Description

SDL_QuitEvent is a member of the SDL_Event union and is used whan an event of type SDL_QUI T
is reported.

As can be seen, the SDL_QuitEvent structure serves no useful purpose. The event itself, on the other
hand, is very important. If you filter out or ignore a quit event then it is impossible for the user to
close the window. On the other hand, if you do accept a quit event then the application window will
be closed, and screen updates will still report success event though the application will no longer be
visible.

Note: The macro SDL_Qui t Request ed will return non-zero if a quit event is pending

See Also

SDL_Event, SDL_Set Event Fil ter

158

SDL_keysym

Name

SDL_keysym— Keysym structure

Structure Definition

t ypedef struct{
U nt 8 scancode;
SDLKey sym
SDLMbd nod;

Ui nt 16 uni code;

} SDL_keysym

Structure Data

scancode Hardware specific scancode
sym SDL virtual keysym

nod Current key modifiers

uni code Translated character
Description

The SDL_keysym structure is used by reporting key presses and releases since it is a part of the
SDL_KeyboardEvent.

The scancode field should generally be left alone, it is the hardware dependent scancode returned
by the keyboard. The sy mfield is extremely useful. It is the SDL-defined value of the key (see SDL
Key Syms. This field is very useful when you are checking for certain key presses, like so:

whi | e(SDL_Pol | Event (&event)){
switch(event.type){
case SDL_KEYDOWN.
i f(event. key. keysym sym==SDLK_LEFT)
move_left();
br eak;

159

DL_keysym

nod stores the current state of the keyboard modifiers as explained in SDL_Get MbdSt at e. The

uni code is only used when UNICODE translation is enabled with SDL_Enabl eUNI CODE. If

uni code is non-zero then this a the UNICODE character corresponding to the keypress. If the high
9 bits of the character are 0, then this maps to the equivalent ASCII character:

char ch;

if ((keysymunicode & OxFF80) == 0) {
ch = keysym uni code & Ox7F;

}

el se {
printf("An International Character.\n");

}

UNICODE translation does have a slight overhead so don’t enable it unless its needed.

See Also
SDLKey

160

SDLKey

Name
SDLKey — Keysym definitions.

Description

Table 8-1. SDL Keysym definitions

SDLKey ASCII value Common name
SDLK_BACKSPACE "\b’ backspace
SDLK_TAB '\t tab
SDLK_CLEAR clear
SDLK_RETURN \r’ return
SDLK_PAUSE pause
SDLK_ESCAPE N escape
SDLK_SPACE C space
SDLK_EXCLAIM ik exclaim
SDLK_QUOTEDBL quotedbl
SDLK_HASH '# hash
SDLK_DOLLAR 'S’ dollar
SDLK_AMPERSAND ‘&’ ampersand
SDLK_QUOTE quote
SDLK_LEFTPAREN (’ left parenthesis
SDLK_RIGHTPAREN ')’ right parenthesis
SDLK_ASTERISK x asterisk
SDLK_PLUS "+’ plus sign
SDLK_COMMA comma
SDLK_MINUS minus sign
SDLK_PERIOD period
SDLK_SLASH '/ forward slash
SDLK_0 "0’ 0

SDLK_1 "1’ 1

SDLK_2 '2’ 2

SDLK_3 '3’ 3

161

SDLKey

SDLKey IASCII value Common name
SDLK_4 "4’ 4

SDLK_5 '5’ 5

SDLK_6 "6’ 6

SDLK 7 "7’ 7

SDLK_8 '8’ 8

SDLK_9 '9’ ¢
SDLK_COLON = colon
SDLK_SEMICOLON ' semicolon
SDLK_LESS "< less-than sign
SDLK_EQUALS "=’ equals sign
SDLK_GREATER P>’ greater-than sign
SDLK_QUESTION v question mark
SDLK_AT ‘@’ at
SDLK_LEFTBRACKET T’ left bracket
SDLK_BACKSLASH '\’ backslash
SDLK_RIGHTBRACKET T right bracket
SDLK_CARET N caret
SDLK_UNDERSCORE " underscore
SDLK_BACKQUOTE grave

SDLK _a 'a’ a

SDLK_b 'b’ b

SDLK ¢ "C’ c

SDLK_d "d’ d

SDLK e e’ e

SDLK_f 'f f

SDLK g 'g’ g

SDLK_h 'h’ h

SDLK i ik i

SDLK_j j’ I

SDLK_k 'k’ k

SDLK_| |’ |

SDLK_m 'm’ m

SDLK_n ‘n’ n

SDLK o ‘0’ (o]

SDLK_p 'p’ p

162

SDLKey

SDLKey IASCII value Common name
SDLK_q Kk q

SDLK _r I’ r

SDLK s 'S’ S

SDLK t 't t

SDLK u u’ u

SDLK v "V’ %

SDLK_w W’ W

SDLK_Xx "X’ X

SDLK _y 'y’ y

SDLK 7 'z’ z
SDLK_DELETE N’ delete
SDLK_KPO keypad 0
SDLK_KP1 keypad 1
SDLK_KP2 keypad 2
SDLK_KP3 keypad 3
SDLK_KP4 keypad 4
SDLK_KP5 keypad 5
SDLK_KP6 keypad 6
SDLK_KP7 keypad 7
SDLK_KP8 keypad 8
SDLK_KP9 keypad 9
SDLK_KP_PERIOD keypad period
SDLK_KP_DIVIDE '/’ keypad divide
SDLK_KP_MULTIPLY * keypad multiply
SDLK_KP_MINUS keypad minus
SDLK_KP_PLUS "+’ keypad plus
SDLK_KP_ENTER \r’ keypad enter
SDLK_KP_EQUALS "=’ keypad equals
SDLK_UP up arrow
SDLK_DOWN down arrow
SDLK_RIGHT right arrow
SDLK_LEFT left arrow
SDLK_INSERT insert
SDLK_HOME home
SDLK_END end

163

SDLKey

SDLKey IASCII value Common name
SDLK_PAGEUP page up
SDLK_PAGEDOWN page down
SDLK_F1 F1
SDLK_F2 F2
SDLK_F3 F3
SDLK_F4 F4
SDLK_F5 F5
SDLK_F6 F6
SDLK_F7 F7
SDLK_F8 F8
SDLK_F9 F9
SDLK_F10 F10
SDLK_F11 F11
SDLK_F12 F12
SDLK_F13 F13
SDLK_F14 F14
SDLK_F15 F15
SDLK_NUMLOCK numlock
SDLK_CAPSLOCK capslock
SDLK_SCROLLOCK scrollock
SDLK_RSHIFT right shift
SDLK_LSHIFT left shift
SDLK_RCTRL right ctrl
SDLK_LCTRL left ctrl
SDLK_RALT right alt
SDLK_LALT left alt
SDLK_RMETA right meta
SDLK_LMETA left meta

SDLK_LSUPER

left windows key

SDLK_RSUPER

right windows key

SDLK_MODE mode shift
SDLK_HELP help
SDLK_PRINT print-screen
SDLK_SYSREQ SysRq
SDLK_BREAK break

164

SDLKey

SDLKey IASCII value Common name
SDLK_MENU menu
SDLK_POWER power
SDLK_EURO euro

Table 8-2. SDL modifier definitions

SDL Modifier Meaning
KMOD_NONE No modifiers applicable
KMOD_NUM Numlock is down
KMOD_CAPS Capslock is down
KMOD_LCTRL Left Control is down
KMOD_RCTRL Right Control is down
KMOD_RSHIFT Right Shift is down
KMOD_LSHIFT Left Shift is down
KMOD_RALT Right Alt is down
KMOD_LALT Left Alt is down
KMOD_CTRL /A Control key is down
KMOD_SHIFT /A Shift key is down
KMOD_ALT An Alt key is down

165

Event Functions.

SDL_PumpEvents

Name

SDL__PunpEvent s — Pumps the event loop, gathering events from the input devices.

Synopsis

#i ncl ude "SDL. h"
voi d SDL_PunpEvent s(voi d);

Description

Pumps the event loop, gathering events from the input devices.

SDL_PunpEvent s gathers all the pending input information from devices and places it on the event
queue. Without calls to SDL_PunpEvent s no events would ever be placed on the queue. Often calls
the need for SDL_PunpEvent s is hidden from the user since SDL_Pol | Event and

SDL_Wai t Event implicitly call SDL_PunpEvent s. However, if you are not polling or waiting for
events (e.g. your filtering them), then you must call SDL_PunpEvent s to force an event queue
update.

Note: You can only call this function in the thread that set the video mode.

See Also

SDL_Pol | Event

166

SDL_PeepEvents

Name

SDL_PeepEvent s — Checks the event queue for messages and optionally returns them.
Synopsis

#i ncl ude "SDL. h"
int SDL_PeepEvents(SDL_Event *events, int nunmevents, SDL_eventaction
action, Ui nt32 mask);

Description

Checks the event queue for messages and optionally returns them.

If act i on is SDL_ADDEVENT, up to nunmrevent s events will be added to the back of the event
queue.

If act i on is SDL_PEEKEVENT, up to nunevent s events at the front of the event queue, matching
mask, will be returned and will not be removed from the queue.

If acti on is SDL_GETEVENT, up to nunevent s events at the front of the event queue, matching
mask, will be returned and will be removed from the queue.

This function is thread-safe.

Return Value

This function returns the number of events actually stored, or -1 if there was an error.

See Also

SDL_Event, SDL_Pol | Event , SDL_PushEvent

167

SDL_PollEvent

Name

SDL_Pol | Event — Polls for currently pending events.
Synopsis

#i ncl ude "SDL. h"
int SDL_Pol | Event (SDL_Event *event);

Description

Polls for currently pending events, and returns 1 if there are any pending events, or 0 if there are
none available.

If event is not NULL, the next event is removed from the queue and stored in that area.

Examples

SDL_Event event; /* Event structure */

/* Check for events */
whi | e(SDL_Pol | Event (&vent)){ /* Loop until there are no events left on the queue */
switch(event.type){ /* Process the appropiate event type */
case SDL_KEYDOWN. /* Handl e a KEYDOMN event */
printf("Ch! Key press\n");
br eak;
case SDL_MOUSEMOTI ON:

default: /* Report an unhandl ed event */
printf("l don’t know what this event is!\n");

168

SDL_PolIEvent

See Also

SDL_Event, SDL_Wai t Event , SDL_PeepEvent s

169

SDL_WaitEvent

Name

SDL_Wai t Event — Waits indefinitely for the next available event.
Synopsis
#i ncl ude "SDL. h"

int SDL_WitEvent (SDL_Event *event);

Description

Waits indefinitely for the next available event, returning 1, or O if there was an error while waiting
for events.

If event is not NULL, the next event is removed from the queue and stored in that area.

See Also

SDL_Event, SDL_Pol | Event

170

SDL_PushEvent

Name

SDL_PushEvent — Pushes an event onto the event queue
Synopsis

#i ncl ude "SDL. h"
int SDL_PushEvent (SDL_Event *event);

Description

The event queue can actually be used as a two way communication channel. Not only can events be
read from the queue, but the user can also push their own events onto it. event is a pointer to the
event structure you wish to push onto the queue.

Note: Pushing device input events onto the queue doesn’'t modify the state of the device within
SDL.

Return Value
Returns 0 on success or -1 if the event couldn’t be pushed.

Examples
See SDL_Event.

See Also

SDL_Pol | Event, SDL_PeepEvent s, SDL_Event

171

SDL_SetEventFilter

Name

SDL_Set Event Fi | t er — Sets up a filter to process all events before they are posted to the event
queue.

Synopsis

#i ncl ude "SDL. h"
void SDL_SetEventFilter(SDL_EventFilter filter);

Description

This function sets up a filter to process all events before they are posted to the event queue. This is a
very powerful and flexible feature. The filter is prototyped as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

If the filter returns 1, then the event will be added to the internal queue. If it returns 0, then the event
will be dropped from the queue. This allows selective filtering of dynamically.

There is one caveat when dealing with the SDL_QUI TEVENT event type. The event filter is only
called when the window manager desires to close the application window. If the event filter returns
1, then the window will be closed, otherwise the window will remain open if possible. If the quit
event is generated by an interrupt signal, it will bypass the internal queue and be delivered to the
application at the next event poll.

Note: Events pushed onto the queue with SDL_PushEvent or SDL_PeepEvent s do not get
passed through the event filter.

Note: Be Careful! The event filter function may run in a different thread so be careful what you
do within it.

172

SDL_SetEventFilter

See Also

SDL_Event, SDL_Get Event Fi | t er, SDL_PushEvent

173

SDL_GetEventFilter

Name

SDL_Get Event Fi | t er — Retrieves a pointer to he event filter
Synopsis
#i ncl ude "SDL. h"

SDL_EventFilter SDL_GetEventFilter(void);

Description

This function retrieces a pointer to the event filter that was previously set using
SDL_Set Event Fi | t er . An SDL_EventFilter function is defined as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

Return Value

Returns a pointer to the event filter or NULL if no filter has been set.

See Also

SDL_Event, SDL_Set Event Fi | t er

174

SDL_EventState

Name

SDL_Event St at e — This function allows you to set the state of processing certain events.
Synopsis

#i ncl ude "SDL. h"
U nt8 SDL_EventState(Uint8 type, int state);

Description

This function allows you to set the state of processing certain eventt ype’s.

If st at e is set to SDL_| GNORE, that eventt ype will be automatically dropped from the event
queue and will not be filtered.

If st at e is set to SDL_ENABLE, that event t ype will be processed normally.

If st at e is set to SDL_QUERY, SDL_Event St at e will return the current processing state of the
specified event t ype.

A list of eventt ype’s can be found in the SDL_Event section.

See Also
SDL_Event

175

SDL_GetKeyState

Name
SDL_ Get Key St at e — Get a snapshot of the current keyboard state

Synopsis

#i ncl ude "SDL. h"
U nt8 *SDL_Get KeyState(int *nunkeys);

Description

Gets a snapshot of the current keyboard state. The current state is return as a pointer to an array, the
size of this array is stored in nunkeys. The array is indexed by the SDLK_* symbols. A value of 1
means the key is pressed and a value of 0 means its not.

Note: Use SDL_PunpEvent s to update the state array.

Example

Ui nt8 *keystate = SDL_GCet KeySt at e(NULL) ;
if (keystate[SDLK_RETURN]) printf("Return Key Pressed.\n");

See Also

SDL Key Synbol s, SDL_PunpEvent s

176

SDL_GetModState

Name
SDL_Get MbdSt at e — Get the state of modifier keys.

Synopsis

#i ncl ude "SDL. h"
SDLMbd SDL_Get ModSt at e(voi d) ;

Description
Returns the current of the modifier keys (CTRL, ALT, etc.).

Return Value

The return value can be an OR’d combination of the SDLMod enum.

SDLMod

typedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHI FT= 0x0001,
KMOD_RSHI FT= 0x0002,

KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,
KMOD_RALT = 0x0200,
KMOD_LMETA = 0x0400,
KMOD_RMETA = 0x0800,
KMOD_NUM = 0x1000,
KMOD_CAPS = 0x2000,
KMOD_MODE = 0x4000,
} SDLMbd;

SDL also defines the following symbols for convenience:

#define KMOD_CTRL (KMOD_LCTRL| KMOD_RCTRL)
#define KMOD_SHIFT (KMOD_LSHI FT| KMOD_RSHI FT)
#define KMOD ALT (KMOD_LALT| KMOD_RALT)
#define KMOD_META (KMOD_LMETA| KMOD_RVETA)

177

DL_GetModSate

See Also

SDL_GCet KeySt at e

178

SDL_SetModState

Name

SDL_Set MbdSt at e — Set the current key modifier state
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Set MbdSt at e(SDLMod nodst at e) ;

Description

The inverse of SDL_Get ModSt at e, SDL_Set ModSt at e allows you to impose modifier key states
on your application.

Simply pass your desired modifier states into nodst at e. This value my be a logical OR’d
combination of the following:

t ypedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHI FT= 0x0001,
KMOD_RSHI FT= 0x0002,
KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,
KMOD_RALT = 0x0200,

KMOD_LMETA = 0x0400,
KMOD_RMETA = 0x0800,
KMOD_NUM = 0x1000,

KMOD_CAPS = 0x2000,
KMOD_MODE = 0x4000,
} SDLMbd;

See Also

SDL_Cet ModSt at e

179

SDL_GetKeyName

Name
SDL_ Get KeyNane — Get the name of an SDL virtual keysym

Synopsis

#i ncl ude "SDL. h"
char *SDL_Get KeyNanme(SDLKey key);

Description
Returns the SDL-defined name of the SDLKey key .

See Also
SDLKey

180

SDL_EnableUNICODE

Name
SDL__Enabl eUNI CODE — Enable UNICODE translation

Synopsis

#i ncl ude "SDL. h"
int SDL_Enabl eUNI CODE(i nt enabl e);

Description
Enables/Disables UNICODE keyboard translation.

If you wish to translate a keysym to it’s printable representation, you need to enable UNICODE
translation using this function (enabl e=0) and then look in the uni code member of the
SDL_keysym structure. This value will be zero for keysyms that do not have a printable
representation. UNICODE translation is disabled by default as the conversion can cause a slight
overhead.

Return Value

Returns the previous translation mode.

See Also
SDL_keysym

181

SDL_EnableKeyRepeat

Name
SDL_Enabl eKeyRepeat — Set keyboard repeat rate.

Synopsis

#i ncl ude "SDL. h"
int SDL_Enabl eKeyRepeat (i nt delay, int interval);

Description

Enables or disables the keyboard repeat rate. del ay specifies how long the key must be pressed
before it begins repeating, it then repeats at the speed specified by i nt er val . Both del ay and
i nterval are expressed in milliseconds.

Setting del ay to O disables key repeating completely. Good default values are
SDL_DEFAULT_REPEAT_DELAY and SDL_DEFAULT_REPEAT_INTERVAL.

Return Value

Returns 0 on success and -1 on failure.

182

SDL_GetMouseState

Name

SDL_Get MbuseSt at e — Retrieve the current state of the mouse
Synopsis

#i ncl ude "SDL. h"
U nt8 SDL_GCet MouseState(int *x, int *y);

Description

The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X) macros, and x and y are set to the current mouse cursor position. You can pass
NULL for either x ory.

Example
SDL_PunpEvent s();

i f (SDL_Get MouseSt at e(NULL, NULL) &SDL_BUTTON(1))
printf("Muse Button 1(left) is pressed.\n");

See Also

SDL_Get Rel ati veMouseSt at e, SDL_PunpEvent s

183

SDL_GetRelativeMouseState

Name

SDL_Get Rel ati veMbuseSt at e — Retrieve the current state of the mouse
Synopsis

#i ncl ude "SDL. h"
U nt8 SDL_Cet Rel ati veMouseState(int *x, int *y);

Description

The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X) macros, and x and y are set to the change in the mouse position since the last call
to SDL_Get Rel at i veMouseSt at e or since event initialization. You can pass NULL for either x or

y.

See Also

SDL_Get MouseSt at e

184

SDL_GetAppState

Name

SDL_Get AppSt at e — Get the state of the application
Synopsis

#i ncl ude "SDL. h"
Ui nt8 SDL_GCet AppSt at e(voi d);

Description

This function returns the current state of the application. The value returned is a bitwise combination
of:

SDL_ APPMOUSEFOCUS The application has mouse focus.

SDL_APPI NPUTFOCUS The application has keyboard focus
SDL_APPACTI VE The application is visible

See Also

SDL_ActiveEvent

185

SDL_JoystickEventState

Name

SDL_Joysti ckEvent St at e — Enable/disable joystick event polling
Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickEventState(int state);

Description

This function is used to enable or disable joystick event processing. With joystick event processing
disabled you will have to update joystick states with SDL_Joyst i ckUpdat e and read the joystick
information manually. st at e is either SDL_QUERY, SDL_ENABLE or SDL_| GNORE.

Note: Joystick event handling is prefered

Return Value

If st at e is SDL_QUERY then the current state is returned, otherwise the new processing st at e is
returned.

See Also

SDL Joystick Functions, SDL_Joyst i ckUpdat e, SDL_JoyAxisEvent, SDL_JoyBallEvent,
SDL_JoyButtonEvent, SDL_JoyHatEvent

186

Chapter 9. Joystick

Joysticks, and other similar input devices, have a very strong role in game playing and SDL provides
comprehensive support for them. Axes, Buttons, POV Hats and trackballs are all supported.

Joystick support is initialized by passed the SDL_I NI T_JOYSTI CK flag to SDL_I ni t . Once
initilized joysticks must be opened using SDL_Joyst i ckQpen.

While using the functions describe in this secton may seem like the best way to access and read from
joysticks, in most cases they aren’t. Ideally joysticks should be read using the event system. To
enable this, you must set the joystick event processing state with SDL_Joyst i ckEvent St at e.
Joysticks must be opened before they can be used of course.

Note: If you are not handling the joystick via the event queue then you must explicitly request a
joystick update by calling SDL_Joyst i ckUpdat e.

Note: Force Feedback is not yet support. Sam (slouken@libsdl.org) is soliciting suggestions
from people with force-feedback experience on the best wat to desgin the API.

SDL_NumJoysticks

Name
SDL_NumJoyst i cks — Count available joysticks.

Synopsis

#i ncl ude "SDL. h"
int SDL_Numloysticks(void);

Description

Counts the number of joysticks attached to the system.

187

SDL_NumJoysticks

Return Value

Returns the number of attached joysticks

See Also

SDL_Joysti ckName, SDL_Joysti ckOpen

188

SDL_JoystickName

Name
SDL_Joyst i ckName — Get joystick name.

Synopsis

#i ncl ude "SDL. h"
const char *SDL_Joysti ckName(int index);

Description

Get the implementation dependent name of joystick. The i ndex parameter refers to the N’th
joystick on the system.

Return Value

Returns a char pointer to the joystick name.

Examples

/* Print the nanmes of all attached joysticks */
int numjoy, i;
num j oy=SDL_NumJoysti cks();
printf("% joysticks found\n", numjoy);
for(i=0;i<numjoy;i++)

printf("%\n", SDL_JoystickNane(i);

See Also

SDL_Joysti ckOpen

189

SDL_JoystickOpen

Name
SDL_Joysti ckOpen — Opens a joystick for use.

Synopsis

#i ncl ude "SDL. h"
SDL_Joystick *SDL_Joysti ckOpen(int index);

Description

Opens a joystick for use within SDL. The i ndex refers to the N’th joystick in the system. A
joystick must be opened before it game be used.

Return Value

Returns a SDL_Joystick structure on success. NULL on failure.

Examples

SDL_Joystick *joy;

/1 Check for joystick

i f (SDL_Numdoysti cks()>0){
/1 Qpen joystick
j oy=SDL_Joyst i ckOpen(0);

if(joy)

{
printf("COpened Joystick 0\n");
printf("Name: %\n", SDL_JoystickName(0));
printf("Nunber of Axes: %\n", SDL_Joysti ckNumAxes(joy));
printf("Number of Buttons: %s\n", SDL_JoystickNunButtons(joy));
printf("Nunber of Balls: %\n", SDL_JoystickNunBalls(joy));

}

el se
printf("Couldn’'t open Joystick 0\n");

190

/1 Close if opened
i f(SDL_JoystickQpened(0))
SDL_Joysti ckC ose(j oy);

See Also

SDL_Joysti ckC ose

DL _JoystickOpen

191

SDL_JoystickOpened

Name

SDL_Joyst i ckOpened — Determine if a joystick has been opened
Synopsis
#i ncl ude "SDL. h"

int SDL_JoystickOpened(int index);

Description

Determines whether a joystick has already been opened within the application. i ndex refers to the
N’th joystick on the system.

Return Value

Returns 1 if the joystick has been opened, or O if it has not.

See Also

SDL_Joysti ckOpen, SDL_Joysti ckd ose

192

SDL_Joystickindex

Name
SDL_Joysti ckl ndex — Get the index of an SDL_Joystick.

Synopsis

#i ncl ude "SDL. h"
int SDL_Joystickl ndex(SDL_Joystick *joystick);

Description

Returns the index of a given SDL_Joystick structure.

Return Value

Index number of the joystick.

See Also

SDL_Joysti ckOpen

193

SDL_JoystickNumAXxes

Name
SDL_Joyst i ckNumAxes — Get the number of joystick axes

Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickNumAxes(SDL_Joystick *joystick);

Description

Return the number of axes available from a previously opened SDL_Joystick.

Return Value

Number of axes.

See Also

SDL_Joysti ckGet Axi s, SDL_Joysti ckOpen

194

SDL_JoystickNumBalls

Name
SDL_Joysti ckNunBal | s — Get the number of joystick trackballs

Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickNunBal | s(SDL_Joystick *joystick);

Description

Return the number of trackballs available from a previously opened SDL_Joystick.

Return Value

Number of trackballs.

See Also

SDL_JoystickGetBal | ,SDL_Joysti ckOpen

195

SDL_JoystickNumHats

Name
SDL_Joysti ckNurmHat s — Get the number of joystick hats

Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickNumHat s(SDL_Joystick *joysti ck);

Description

Return the number of hats available from a previously opened SDL_Joystick.

Return Value

Number of hats.

See Also

SDL_Joysti ckGet Hat , SDL_Joysti ckOpen

196

SDL_JoystickNumButtons

Name

SDL_Joysti ckNumBut t ons — Get the number of joysitck buttons
Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickNunmButtons(SDL_Joystick *joystick);

Description

Return the number of buttons available from a previously opened SDL_Joystick.

Return Value

Number of buttons.

See Also

SDL_Joysti ckGet Button,SDL_Joysti ckOpen

197

SDL_JoystickUpdate

Name
SDL_Joysti ckUpdat e — Updates the state of all joysticks

Synopsis
#i ncl ude "SDL. h"

voi d SDL_Joysti ckUpdat e(voi d);

Description

Updates the state(position, buttons, etc.) of all open joysticks. If joystick events have been enabled
with SDL_Joyst i ckEvent St at e then this is called automatically in the event loop.

See Also

SDL_Joysti ckEvent St at e

198

SDL_JoystickGetAxis

Name

SDL_Joysti ckGet Axi s — Get the current state of an axis
Synopsis

#i ncl ude "SDL. h"
Sint16 SDL_JoystickGet Axi s(SDL_Joystick *joystick, int axis);

Description

SDL_Joyst i ckGet Axi s returns the current state of the given axi s on the givenj oysti ck.

On most modern joysticks the X axis is usually represented by axi s 0 and the Y axis by axi s 1.
The value returned by SDL_Joyst i ckGet Axi s is a signed integer (-32768 to 32768) representing
the current position of the axi s, it maybe necessary to impose certain tolerances on these values to
account for jitter. It is worth noting that some joysticks use axes 2 and 3 for extra buttons.

Return Value

Returns a 16-bit signed integer representing the current position of the axi s.

Examples

Sint16 x_nove, y_nove;
SDL_Joystick *joyl;

x_nmove=SDL_Joysti ckGet Axi s(joyl, 0);
y_nove=SDL_Joysti ckGet Axi s(j oyl, 1);

199

SDL_JoystickGetAxis

See Also

SDL_Joysti ckNumAxes

200

SDL_JoystickGetHat

Name

SDL_Joysti ckGet Hat — Get the current state of a joystick hat
Synopsis

#i ncl ude "SDL. h"
Ui nt8 SDL_JoystickGet Hat (SDL_Joystick *joystick, int hat);

Description

SDL_JoystickGetHat returns the current state of the given hat on the givenj oysti ck.

Return Value

The current state is returned as a Uint8 which is defined as an OR’d combination of one or more of
the following

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RI GHT
SDL_HAT_DOWN
SDL_HAT_LEFT
SDL_HAT_RI GHTUP
SDL_HAT_RI GHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also

SDL_Joysti ckNunHat s

201

SDL_JoystickGetButton

Name

SDL_Joysti ckGet But t on — Get the current state of a given button on a given joystick
Synopsis

#i ncl ude "SDL. h"
Ui nt8 SDL_JoystickGetButton(SDL_Joystick *joystick, int button);

Description

SDL_JoystickGetButton returns the current state of the given but t on on the givenj oysti ck.

Return Value

1 if the button is pressed. Otherwise, 0.

See Also

SDL_Joysti ckNunButt ons

202

SDL_JoystickGetBall

Name

SDL_Joysti ckGet Bal | — Get relative trackball motion
Synopsis

#i ncl ude "SDL. h"
int SDL_JoystickGetBall (SDL_Joystick *joystick, int ball, int *dx, int
“dy);

Description

Get the bal | axis change.

Trackballs can only return relative motion since the last call to SDL_Joyst i ckGet Bal | , these
motion deltas a placed into dx and dy .

Return Value

Returns 0 on success or -1 on failure

Examples

int delta_x, delta_y;
SDL_Joystick *joy;

SDL_Joysti ckUpdat e();

i f(SDL_JoystickGetBall (joy, 0, &lelta_x, &delta_y)==-1)
printf("TrackBall Read Error!\n");

printf("Trackball Delta- X: %, Y:%l\n", delta_x, delta_y);

203

SDL_JoystickGetBall

See Also

SDL_Joysti ckNunBal | s

204

SDL_JoystickClose

Name

SDL_Joysti ckCl ose — Closes a previously opened joystick
Synopsis

#i ncl ude "SDL. h"
voi d SDL_JoystickC ose(SDL_Joystick *joystick);

Description

Close aj oyst i ck that was previously opened with SDL_Joyst i ckOpen.

See Also

SDL_Joysti ckOpen, SDL_Joysti ckOpened

205

Chapter 10. Audio

Sound on the computer is translated from waves that you hear into a series of values, or samples,
each representing the amplitude of the wave. When these samples are sent in a stream to a sound
card, an approximation of the original wave can be recreated. The more bits used to represent the
amplitude, and the greater frequency these samples are gathered, the closer the approximated sound
is to the original, and the better the quality of sound.

This library supports both 8 and 16 bit signed and unsigned sound samples, at frequencies ranging
from 11025 Hz to 44100 Hz, depending on the underlying hardware. If the hardware doesn’t support
the desired audio format or frequency, it can be emulated if desired (See SDL_OpenAudi o())

A commonly supported audio format is 16 bits per sample at 22050 Hz.

SDL_AudioSpec

Name
SDL_ Audi oSpec — Audio Specification Structure

Structure Definition

t ypedef struct{
int freq;
U ntl16 format;
Ui nt 8 channel s;
U nt8 sil ence;
Ui nt 16 sanpl es;
U nt 32 size;
void (*cal |l back) (void *userdata, U nt8 *stream int len);
voi d *userdat a;
} SDL_Audi oSpec;

Structure Data

freq Audio frequency in samples per second
f or mat Audio data format

channel s Number of channels: 1 mono, 2 stereo

sil ence Audio buffer silence value (calculated)
sanpl es Audio buffer size in samples

206

SDL_AudioSpec

si ze Audio buffer size in bytes (calculated)
cal | back(..) Callback function for filling the audio buffer
user dat a Pointer the user data which is passed to the

callback function

Description

The SDL_AudioSpec structure is used to describe the format of some audio data. This structure is
used by SDL_OpenAudi o and SDL_LoadWAV. While all fields are used by SDL_QpenAudi o only
freq,format,sanpl es and channel s are used by SDL_LoadWAV. We will detail these
common members here.

freq The number of samples sent to the sound device
every second. Common values are 11025, 22050
and 44100. The higher the better.

207

f or mat

channel s

SDL_AudioSpec

Specifies the size and type of each sample
element AUDI O_US8

Unsigned 8-bit samples
AUDI O_S8

Signed 8-bit samples
AUDI O_U16 or AUDI O_U16LSB

Unsigned 16-bit little-endian samples
AUDI O_S16 or AUDI O_S16LSB

Signed 16-bit little-endian samples
AUDI O_U16MVSB

Unsigned 16-bit big-endian samples
AUDI O_S16MVSB

Signed 16-bit big-endian samples
AUDI O_U16SYS

Either AUDI O _U16LSB or
AUDI O_U16MSB depending on you systems
endianness
AUDI O_S16SYS

Either AUDI O_S16LSB or

AUDI O_S16MSB depending on you systems
endianness

The number of seperate sound channels. 1 is
mono (single channel), 2 is stereo (dual channel).

208

sanpl es

See Also

SDL_OpenAudi o, SDL_LoadWAV

SDL_AudioSpec

When used with SDL_OpenAudi o this refers to
the size of the audio buffer in samples. A sample a
chunk of audio data of the size specified in

f or mat mulitplied by the number of channels.
When the SDL_AudioSpec is used with
SDL_LoadWAV sanpl es is set to 4096.

209

SDL_OpenAudio

Name

SDL_OpenAudi o — Opens the audio device with the desired parameters.
Synopsis

#i ncl ude "SDL. h"
int SDL_COpenAudi o(SDL_Audi oSpec *desired, SDL_Audi oSpec *obt ai ned);

Description

This function opens the audio device with the desi r ed parameters, and returns 0 if successful,
placing the actual hardware parameters in the structure pointed to by obt ai ned. If obt ai ned is
NULL, the audio data passed to the callback function will be guaranteed to be in the requested
format, and will be automatically converted to the hardware audio format if necessary. This function
returns -1 if it failed to open the audio device, or couldn’t set up the audio thread.

To open the audio device a desi r ed SDL_AudioSpec must be created.

SDL_Audi oSpec *desired;

desi red=(SDL_Audi oSpec *) mal | oc(si zeof (SDL_Audi oSpec));

You must then fill this structure with your desired audio specifications.

desired->f r eq

The desired audio frequency in samples-per-second.

desired->f or mat
The desired audio format (see SDL_AudioSpec)

desired->sanpl es

The desired size of the audio buffer in samples. This number should be a power of two, and
may be adjusted by the audio driver to a value more suitable for the hardware. Good values
seem to range between 512 and 8192 inclusive, depending on the application and CPU speed.
Smaller values yield faster response time, but can lead to underflow if the application is doing
heavy processing and cannot fill the audio buffer in time. A stereo sample consists of both right

210

SDL_OpenAudio

and left channels in LR ordering. Note that the number of samples is directly related to time by
the following formula: ms = (samples*1000)/freq

desired->cal | back

This should be set to a function that will be called when the audio device is ready for more data.
It is passed a pointer to the audio buffer, and the length in bytes of the audio buffer. This
function usually runs in a separate thread, and so you should protect data structures that it
accesses by calling SDL_LockAudi o and SDL_Unl ockAudi o in your code. The callback
prototype is:

voi d cal | back(void *userdata, U nt8 *stream int |en);

user dat a is the pointer stored in user dat a field of the SDL_AudioSpec. st r eamis a
pointer to the audio buffer you want to fill with information and | en is the length of the audio
buffer in bytes.

desired->user dat a
This pointer is passed as the first parameter to the cal | back function.

SDL_OpenAudi o reads these fields from the desi r ed SDL_AudioSpec structure pass to the
function and attempts to find an audio configuration matching your desi r ed. As mentioned above,
if the obt ai ned parameter is NULL then SDL with convert from your desi r ed audio settings to
the hardware settings as it plays.

If obt ai ned is NULL then the desi r ed SDL_AudioSpec is your working specification, otherwise
the obt ai ned SDL_AudioSpec becomes the working specification and the desi r ec specification
can be deleted. The data in the working specification is used when building SDL_AudioCVT’s for
converting loaded data to the hardware format.

SDL_OpenAudi o calculates the si ze and si | ence fields for both the desi r ed and obt ai ned
specifications. The si ze field stores the total size of the audio buffer in bytes, while the si | ence
stores the value used to represent silence in the audio buffer

The audio device starts out playing si | ence when it’s opened, and should be enabled for playing
by calling SDL_PauseAudi o(0) when you are ready for your audio cal | back function to be
called. Since the audio driver may modify the requested si ze of the audio buffer, you should
allocate any local mixing buffers after you open the audio device.

Examples

/* Prototype of our callback function */
voi d ny_audi o_cal | back(void *userdata, Uint8 *stream int len);

/* Open the audio device */

SDL_Audi oSpec *desired, *obtained;
SDL_Audi oSpec *har dwar e_spec;

211

SDL_OpenAudio

/* Al'locate a desired SDL_Audi oSpec */
desi red=(SDL_Audi oSpec *) mal | oc(si zeof (SDL_Audi oSpec));

/* Allocate space for the obtained SDL_Audi oSpec */
obt ai ned=(SDL_Audi oSpec *) nal | oc(si zeof (SDL_Audi oSpec)) ;

/* 22050Hz - FM Radio quality */
desi r ed- >f r eq=22050;

/* 16-bit signed audio */
desi r ed- >f or mat =AUDI O_S16LSB;

/* Large audio buffer reduces risk of dropouts but increases response tinme */
desi r ed- >sanpl es=8192;

/* Qur callback function */
desi r ed- >cal | back=my_audi o_cal | back;

desi r ed- >user dat a=NULL;

/* Open the audio device */

if (SDL_OpenAudi o(desired, obtained) < 0){
fprintf(stderr, "Couldn't open audio: %\n", SDL_GetError());
exit(-1);

}

/* desired spec is no |onger needed */

free(desired);

har dwar e_spec=obt ai ned,;

/* Prepare callback for playing */

/* Start playing */
SDL_PauseAudi o(0);

See Also

SDL_Audi oSpec, SDL_LockAudi o, SDL_Unl ockAudi o, SDL_PauseAudi o

212

SDL_PauseAudio

Name

SDL_PauseAudi o — Pauses and unpauses the audio callback processing
Synopsis

#i ncl ude "SDL. h"
voi d SDL_PauseAudi o(i nt pause_on);

Description

This function pauses and unpauses the audio callback processing. It should be called with
pause_on=0 after opening the audio device to start playing sound. This is so you can safely
initialize data for your callback function after opening the audio device. Silence will be written to the
audio device during the pause.

See Also

SDL_Cet Audi oSt at us, SDL_QpenAudi o

213

SDL_GetAudioStatus

Name

SDL_ Get Audi 0St at us — Get the current audio state
Synopsis

#i ncl ude "SDL. h"
SDL_audi ost at usSDL_Get Audi oSt at us(voi d) ;

Description

t ypedef enun{
SDL_AUDI O_STOPPED,
SDL_AUDI O_PAUSED,
SDL_AUDI O_PLAYI NG

} SDL_audi ost at us;

Returns either SDL_AUDI O STOPPED, SDL_AUDI O PAUSED or SDL_AUDI O _PLAYI NGdepending on
the current audio state.

See Also

SDL_PauseAudi o

214

SDL_LoadWAV

Name
SDL_LoadWAV — Load a WAVE file

Synopsis

#i ncl ude "SDL. h"
SDL_Audi oSpec *SDL_LoadWAV(const char *file, SDL_Audi oSpec *spec, Ui nt8
**audi o_buf, U nt32 *audio_len);

Description

SDL_LoadWAV This function loads a WAVE f i | e into memory.

If this function succeeds, it returns the given SDL_Audi oSpec, filled with the audio data format of
the wave data, and sets audi o_buf to a mal | oc’d buffer containing the audio data, and sets
audi o_| en to the length of that audio buffer, in bytes. You need to free the audio buffer with
SDL_Fr eeVWAV when you are done with it.

This function returns NULL and sets the SDL error message if the wave file cannot be opened, uses
an unknown data format, or is corrupt. Currently raw, MS-ADPCM and IMA-ADPCM WAVE files
are supported.

Example

SDL_Audi oSpec wav_spec;
Ui nt 32 wav_I engt h;
U nt8 *wav_buffer;

/* Load the WAV */

if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buffer, &wav_Ilength) == NULL){
fprintf(stderr, "Could not open test.wav: %\n", SDL _GetError());
exit(-1);

}

/* Do stuff with the WAV */

215

SDL_LoadWAV

/* Free It */
SDL_FreeWAV(wav_buffer);

See Also

SDL_AudioSpec, SDL_OpenAudi o, SDL_Fr ee VAV

216

SDL_FreeWAV

Name
SDL_ Fr eeWAV — Frees previously opened WAV data

Synopsis

#i ncl ude "SDL. h"
voi d SDL_FreeWAV(Ui nt8 *audi o_buf);

Description

After a WAVE file has been opened with SDL_LoadWAV its data can eventually be freed with
SDL_Fr eeWAV. audi o_buf is a pointer to the buffer created by SDL_LoadWAV.

See Also

SDL_LoadWAV

217

SDL_AudioCVT

Name

SDL_ Audi oCVT — Audio Conversion Structure

Structure Definition

t ypedef struct{
int needed;
Ui nt1l6 src_fornmat;
Ui nt16 dest_format;
doubl e rate_incr;

Ui nt8 *buf;
int len;
int len_cvt;

int len_mult;
doubl e I en_rati o;
void (*filters[10])(struct SDL_Audi oCVT *cvt, Uintl6 format);
int filter_index;
} SDL_Audi oCVT;

Structure Data

needed Set to one if the conversion is possible

src_format Audio format of the source

dest _format Audio format of the destination

rate_incr Rate conversion increment

buf Audio buffer

| en Length of the original audio buffer in bytes

| en_cvt Length of converted audio buffer in bytes
(calculated)

[en_nul t buf mustbel en*l en_nul t bytesin
size(calculated)

len_ratio Final audio sizeisl en*l en_rati o

filters[10](..) Pointers to functions needed for this conversion

filter_index Current conversion function

218

SDL_AudioCVT

Description

The SDL_AudioCVT is used to convert audio data between different formats. A SDL_AudioCVT
structure is created with the SDL_Bui | dAudi oCVT function, while the actual conversion is done by
the SDL_Convert Audi o function.

Many of the fields in the SDL_AudioCVT structure should be considered private and their function
will not be discussed here.

Uint8 *buf

This points to the audio data that will be used in the conversion. It is both the source and the
destination, which means the converted audio data overwrites the original data. It also means
that the converted data may be larger than the original data (if you were converting from 8-bit to
16-bit, for instance), so you must ensure buf is large enough. See below.

intl en

This is the length of the original audio data in bytes.

intlen_nul t
As explained above, the audio buffer needs to be big enough to store the converted data, which
may be bigger than the original audio data. The length of buf should be | en*l en_nul t .
doublel en_ratio

When you have finished converting your audio data, you need to know how much of your audio
buffer is valid. | en*l en_r at i o is the size of the converted audio data in bytes. This is very
similar to| en_nul t , however when the convert audio data is shorter than the original

I en_mul t wouldbe 1.1 en_r at i 0, on the other hand, would be a fractional number
between 0 and 1.

See Also

SDL_Bui | dAudi oCVT, SDL_Convert Audi o, SDL_AudioSpec

219

SDL_BuildAudioCVT

Name
SDL_Bui | dAudi oCVT — Initializes a SDL_AudioCVT structure for conversion

Synopsis

#i ncl ude "SDL. h"

int SDL_Bui | dAudi oCVT(SDL_Audi oCVT *cvt, Uintl6 src_format, U nt8
src_channels, int src_rate, Ui ntl6 dst_format, U nt8 dst_channels, int
dst _rate);

Description

Before an SDL_AudioCVT structure can be used to convert audio data it must be initialized with
source and destination information.

src_format anddst _f or mat are the source and destination format of the conversion. (For
information on audio formats see SDL_AudioSpec). sr c_channel s and dst _channel s are
the number of channels in the source and destination formats. Finally, src_rat e anddst _rat e
are the frequency or samples-per-second of the source and destination formats. Once again, see
SDL_AudioSpec.

Return Values

Returns -1 if the filter could not be built or 1 if it could.

Examples

See SDL_Convert Audi o.

See Also

SDL_Convert Audi o, SDL_Audi oCVT

220

SDL_ConvertAudio

Name

SDL_Convert Audi o — Convert audio data to a desired audio format.
Synopsis

#i ncl ude "SDL. h"
int SDL_Convert Audi o(SDL_Audi oCVT *cvt);

Description

SDL_Conver t Audi o takes one parameter, cvt , which was previously initilized. Initilizing a
SDL_AudioCVT is a two step process. First of all, the structure must be passed to

SDL_Bui | dAudi oCVT along with source and destination format parameters. Secondly, the

cvt->buf and cvt->| en fields must be setup. cvt->buf should point to the audio data and cvt->I en
should be set to the length of the audio data in bytes. Remember, the length of the buffer pointed to
by buf show bel en*l en_nul t bytes in length.

Once the SDL_AudioCVTstructure is initilized then we can pass it to SDL_Conver t Audi o, which
will convert the audio data pointer to by cvt->buf . If SDL_Convert Audi o returned O then the
conversion was completed successfully, otherwise -1 is returned.

If the conversion completed successfully then the converted audio data can be read from cvt->buf .
The amount of valid, converted, audio data in the buffer is equal to cvt->| en*cvt ->len_ratio.

Examples

/* Converting sone WAV data to hardware format */
voi d ny_audi o_cal | back(void *userdata, Ui nt8 *stream int len);

SDL_Audi oSpec *desired, *obtained;
SDL_Audi oSpec wav_spec;

SDL_Audi oCVT wav_cvt;

U nt32 wav_lI en;

U nt8 *wav_buf;

int ret;

/* Allocated audi o specs */
desi red=(SDL_Audi oSpec *) mal | oc(si zeof (SDL_Audi oSpec));

221

SDL_ConvertAudio

obt ai ned=(SDL_Audi oSpec *) nal | oc(si zeof (SDL_Audi oSpec)) ;

/* Set desired format */

desi r ed- >f r eq=22050;

desi r ed- >f or mat =AUDI O_S16LSB;

desi r ed- >sanpl es=8192;

desi r ed- >cal | back=my_audi o_cal | back;
desi r ed- >user dat a=NULL;

/* Open the audio device */

if (SDL_OpenAudi o(desired, obtained) < 0){
fprintf(stderr, "Couldn’t open audio: %\n", SDL_GetError());
exit(-1);

}

free(desired);

/* Load the test.wav */

if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buf, &wav_len) == NULL){
fprintf(stderr, "Could not open test.wav: %\n", SDL_CetError());
SDL_Cl oseAudi o();
free(obtained);
exit(-1);

}

/* Build Audi oCVT */
ret = SDL_Bui | dAudi oCVT(&av_cvt,
wav_spec. format, wav_spec. channel s, wav_spec.freq,
obt ai ned- >f ormat, obtai ned->channel s, obtai ned->freq);

/* Check that the convert was built */
if(ret==-1){
fprintf(stderr, "Couldn’t build converter!\n");
SDL_Cl oseAudi o();
free(obtai ned);
SDL_Fr eeVWAV(wav_buf) ;
}

/* Setup for conversion */

wav_cvt. buf=(Uint8 *)mall oc(wav_|l en*wav_cvt.len_nult);
wav_cvt. | en=wav_l| en;

mencpy(wav_cvt. buf, wav_buf, wav_len);

/* We can delete to original WAV data now */
SDL_Fr eeVWAV(wav_buf) ;

/* And now we’'re ready to convert */
SDL_Convert Audi o(&wvav_cvt) ;

222

SDL_ConvertAudio

/* do whatever */

See Also

SDL_Bui | dAudi oCVT, SDL_Audi oCVT

223

SDL_MixAudio

Name
SDL_M xAudi 0 — Mix audio data

Synopsis

#i ncl ude "SDL. h"
void SDL_M xAudio(Uint8 *dst, U nt8 *src, Unt32 len, int volune);

Description

This function takes two audio buffers of | en bytes each of the playing audio format and mixes them,
performing addition, volume adjustment, and overflow clipping. The vol une ranges from 0 to
SDL_M X_MAXVOLUME and should be set to the maximum value for full audio volume. Note this does
not change hardware volume. This is provided for convenience -- you can mix your own audio data.

See Also

SDL_OpenAudi o

224

SDL_LockAudio

Name

SDL_LockAudi o — Lock out the callback function
Synopsis
#i ncl ude "SDL. h"

voi d SDL_LockAudi o(voi d);

Description

The lock manipulated by these functions protects the callback function. During a LockAudio period,
you can be guaranteed that the callback function is not running. Do not call these from the callback
function or you will cause deadlock.

See Also

SDL_OpenAudi o

225

SDL_UnlockAudio

Name

SDL_Unl ockAudi o — Unlock the callback function
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Unl ockAudi o(voi d);

Description

Unlocks a previous SDL_LockAudi o call.

See Also

SDL_OpenAudi o

226

SDL_CloseAudio

Name

SDL_C oseAudi o — Shuts down audio processing and closes the audio device.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Cl oseAudi o(voi d);

Description

This function shuts down audio processing and closes the audio device.

See Also

SDL_OpenAudi o

227

Chapter 11. CD-ROM

SDL supports audio control of up to 32 local CD-ROM drives at once.

You use this API to perform all the basic functions of a CD player, including listing the tracks,
playing, stopping, and ejecting the CD-ROM. (Currently, multi-changer CD drives are not
supported.)

Before you call any of the SDL CD-ROM functions, you must first call

"SDL_I ni t (SDL_I NI T_CDROM ", which scans the system for CD-ROM drives, and sets the
program up for audio control. Check the return code, which should be 0, to see if there were any
errors in starting up.

After you have initialized the library, you can find out how many drives are available using the
SDL_CDNunDr i ves() function. The first drive listed is the system default CD-ROM drive. After
you have chosen a drive, and have opened it with SDL_CDOpen(), you can check the status and start
playing if there’s a CD in the drive.

A CD-ROM is organized into one or more tracks, each consisting of a certain number of "frames".
Each frame is ~2K in size, and at normal playing speed, a CD plays 75 frames per second. SDL
works with the number of frames on a CD, but this can easily be converted to the more familiar
minutes/seconds format by using the FRAMES_TO_MSF() macro.

SDL_CDNumbDrives

Name
SDL_CDNunDr i ves — Returns the number of CD-ROM drives on the system.

Synopsis

#i ncl ude "SDL. h"
int SDL_CDNunDrives(void);

Description

Returns the number of CD-ROM drives on the system.

228

SDL_CDNumbDrives

See Also
SDL_CDOpen

229

SDL_CDName

Name

SDL_ CDNane — Returns a human-readable, system-dependent identifier for the CD-ROM.
Synopsis

#i ncl ude "SDL. h"
const char *SDL_CDNane(int drive);

Description

Returns a human-readable, system-dependent identifier for the CD-ROM. dr i ve is the index of the
drive. Drive indices start to 0 and end at SDL_CDNunDr i ves() -1.

Examples

« "/dev/cdrom”
nE
« "/dev/disk/ide/1/master"

See Also

SDL_CDNunDri ves

230

SDL_CDOpen

Name
SDL_CDOpen — Opens a CD-ROM drive for access.

Synopsis

#i ncl ude "SDL. h"
SDL_CD *SDL_CDOpen(int drive);

Description

Opens a CD-ROM drive for access. It returns a SDL_CD structure on success, or NULL if the drive
was invalid or busy. This newly opened CD-ROM bhecomes the default CD used when other CD
functions are passed a NULL CD-ROM handle.

Drives are numbered starting with 0. Drive 0 is the system default CD-ROM.

Examples

SDL_CD *cdrom

int cur_track;

int mn, sec, frane;
SDL_Init(SDL_I NI T_CDROM ;
atexit(SDL_Quit);

/* Check for CD drives */

i f(!SDL_CDNunDrives()){
/* None found */
fprintf(stderr, "No CDROM devi ces avail abl e\n");
exit(-1);

}

/* Open the default drive */
cdr onrSDL_CDOpen(0) ;

/* Didif open? Check if cdromis NULL */

if(!cdrom{
fprintf(stderr, "Couldn’t open drive: %\n", SDL_GetError());
exit(-1);

231

SDL_CDOpen

}

/* Print Volume info */

printf("Name: %\n", SDL_CDNane(0));

printf("Tracks: %\ n", cdrom >nuntracks);

for(cur_track=0;cur_track < cdrom >nuntracks; cur_track++){
FRAMES TO MSF(cdrom >track[cur_track].length, & n, &sec, &f rane);
printf("\tTrack %d: Length %: %\ n", cur_track, mn, sec);

}

SDL_CDCl ose(cdrom;

See Also
SDL_CD, SDL_CDtrack, SDL_CDCl ose

232

SDL_CDsStatus

Name

SDL_ CDsSt at us — Returns the current status of the given drive.
Synopsis

#i ncl ude "SDL. h"

CDst at us SDL_CDSt at us(SDL_CD *cdrom;

/* Gven a status, returns true if there’'s a disk in the drive */
#define CD_I NDRI VE(st at us) ((int)status > 0)

Description

This function returns the current status of the given drive. Status is described like so:

t ypedef enum {
CD_TRAYEMPTY,
CD_STOPPED,
CD_PLAYI NG,
CD_PAUSED,

CD ERROR = -1

} CDst at us;

If the drive has a CD in it, the table of contents of the CD and current play position of the CD will be
stored in the SDL_CD structure.

The macro CD_I NDRI VE is provided for convenience, and given a status returns true if there’s a disk
in the drive.

Note: SDL_CDSt at us also updates the SDL_CD structure passed to it.

Example

int playTrack(int track)
{

233

SDL_CDSatus

int playing = 0;

if (CD_INDRIVE(SDL_CDStatus(cdrom)) {
/* clanmp to the actual number of tracks on the CD */
if (track >= cdrom >nuntracks) {
track = cdrom >nuntracks- 1;

}

if (SDL_CDPl ayTracks(cdrom track, 0, 1, 0) == 0) {
pl aying = 1;
}
}

return playing;

}

See Also

SDL_CD

234

SDL_CDPlay

Name
SDL_CDPI ay — Play a CD

Synopsis

#i ncl ude "SDL. h"
int SDL_CDPl ay(SDL_CD *cdrom int start, int |length);

Description

Plays the given cdr om starting a frame st art for| engt h frames.

Return Values

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPI ayTr acks, SDL_CDSt op

235

SDL_CDPlayTracks

Name
SDL_CDPI ayTr acks — Play the given CD track(s)

Synopsis

#i ncl ude "SDL. h"
int SDL_CDPl ayTracks(SDL_CD *cdrom int start_track, int start_frame, int
ntracks, int nframes));

Description

SDL_CDPI ayTr acks plays the given CD starting at track st ar t _t r ack, for nt r acks tracks.

start _frane is the frame offset, from the beginning of the st art _t r ack, at which to start.
nf r ames is the frame offset, from the beginning of the last track (st art _t rack+nt r acks), at
which to end playing.

SDL_CDPI ayTr acks should only be called after calling SDL_CDSt at us to get track information
about the CD.

Note: Data tracks are ignored.

Return Value

Returns 0, or -1 if there was an error.

Examples

/* assuming cdromis a previously opened device */
/* Play the entire CD */
i f (CD_I NDRI VE(SDL_CDSt at us(cdrony))

SDL_CDPI ayTracks(cdrom 0, 0, 0, 0);

/* Play the first track */

236

i f (CD_I NDRI VE(SDL_CDSt at us(cdron)))
SDL_CDPI ayTracks(cdrom 0, 0, 1, 0);

/* Play first 15 seconds of the 2nd track */
i f (CD_I NDRI VE(SDL_CDSt at us(cdron)))

SDL_CDPI ayTracks(cdrom 1, 0, 0, CD _FPS*15);

See Also

SDL_CDPI ay, SDL_CDSt at us, SDL_CD

SDL_CDPlayTracks

237

SDL_CDPause

Name
SDL_CDPause — Pauses a CODROM

Synopsis

#i ncl ude "SDL. h"
int SDL_CDPause(SDL_CD *cdrom;

Description

Pauses play on the given cdr om

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPI ay, SDL_CDResune

238

SDL_CDResume

Name
SDL_CDResunme — Resumes a CDROM

Synopsis

#i ncl ude "SDL. h"
int SDL_CDResume(SDL_CD *cdron;

Description

Resumes play on the given cdr om

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPI ay, SDL_CDPause

239

SDL_CDStop

Name
SDL_CDSt op — Stops a CDROM

Synopsis

#i ncl ude "SDL. h"
int SDL_CDSt op(SDL_CD *cdrom;

Description

Stops play on the given cdr om

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPI ay,

240

SDL_CDEject

Name
SDL_CDEj ect — Ejectsa CDROM

Synopsis

#i ncl ude "SDL. h"
int SDL_CDEj ect (SDL_CD *cdrom;

Description

Ejects the given cdr om

Return Value

Returns 0 on success, or -1 on an error.

See Also
SDL_CD

241

SDL_CDClose

Name
SDL_CDCl ose — Closes a SDL_CD handle

Synopsis

#i ncl ude "SDL. h"
voi d SDL_CDCl ose(SDL_CD *cdrom;

Description

Closes the given cdr omhandle.

See Also
SDL_CDOpen, SDL_CD

242

SDL_CD

Name
SDL_CD— CDROM Drive Information

Structure Definition

typedef struct{

int id;

CDst at us st at us;

int nuntracks;

int cur_track;

int cur_frane;

SDL_CDt rack track[SDL_MAX_TRACKS+1] ;
} SDL_CD;

Structure Data

id Private drive identifier

st at us Drive status

nunt r acks Number of tracks on the CD

cur _track Current track

cur_franme Current frame offset within the track
track[SDL_MAX TRACKS+1] Array of track descriptions. (see SDL_CDtrack)
Description

An SDL_CD structure is returned by SDL_CDOpen. It represents an opened CDROM device and
stores information on the layout of the tracks on the disc.

A frame is the base data unit of a CD. CD_FPS frames is equal to 1 second of music. SDL provides
two macros for converting between time and frames: FRAMES_TO MSF(f, M S, F) and
VBF_TO_FRAMES.

Examples

int mn, sec, frane;
int frame_offset;

243

SDL_CD

FRAMES _TO MSF(cdrom >cur_frane, &mrin, &sec, & rane);
printf("Current Position: % mnutes, % seconds, % frames\n", mn, sec, frane);

frame_of fset =MSF_TO _FRAMES(mi n, sec, frame);

See Also
SDL_CDOpen, SDL_CDtrack

244

SDL_CDtrack

Name

SDL_CDt r ack — CD Track Information Structure

Structure Definition

t ypedef struct{
unt8 id;
Ui nt8 type;
Ui nt32 | ength;
U nt32 offset;
} SDL_CDtrack;

Structure Data

id Track number (0-99)

type SDL_AUDI O TRACK or SDL_DATA TRACK
| ength Length, in frames, of this track

of f set Frame offset to the beginning of this track
Description

SDL_CDtrack stores data on each track on a CD, its fields should be pretty self explainatory. It is a
member a the SDL_CD structure.

Note: Frames can be converted to standard timings. There are CD_FPS frames per second, so
SDL_CDtrack.l engt h/CD_FPS=length_in_seconds.

See Also
SDL_CD

245

Chapter 12. Multi-threaded Programming

SDL provides functions for creating threads, mutexes, semphores and condition variables.

In general, you must be very aware of concurrency and data integrity issues when writing
multi-threaded programs. Some good guidelines include:

- Don’t call SDL video/event functions from separate threads

- Don’tuse any library functions in separate threads

+ Don’t perform any memory management in separate threads

« Lock global variables which may be accessed by multiple threads

- Never terminate threads, always set a flag and wait for them to quit

+ Think very carefully about all possible ways your code may interact

Note: SDLs threading is not implemented on MacOS, due to that lack of preemptive thread
support (eck!)

SDL_CreateThread

Name

SDL_Cr eat eThr ead — Creates a new thread of execution that shares its parent’s properties.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
SDL_Thread *SDL_CreateThread(int (*fn)(void *), void *data);

246

SDL_CreateThread

Description

SDL_Cr eat eThr ead creates a new thread of execution that shares all of its parent’s global memory,
signal handlers, file descriptors, etc, and runs the function f n passed the void pointer dat a The
thread quits when this function returns.

See Also

SDL_Ki || Thr ead

247

SDL_ThreadID

Name
SDL_Thr eadl D— Get the 32-bit thread identifier for the current thread.

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
Ui nt32 SDL_Threadl D(voi d);

Description

Get the 32-bit thread identifier for the current thread.

248

SDL_GetThreadlD

Name
SDL_Get Thr eadl D— Get the SDL thread ID of a SDL_Thread

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
Ui nt 32 SDL_Get Threadl D(SDL_Thread *t hread);

Description
Returns the ID of a SDL_Thread created by SDL_CreateThread.

See Also
SDL_CreateThread

249

SDL_WaitThread

Name
SDL_Wai t Thr ead — Wait for a thread to finish.

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
voi d SDL_Wait Thread(SDL_Thread *t hread, int *status);

Description

Wait for a thread to finish (timeouts are not supported).

Return Value

The return code for the thread function is placed in the area pointed to by st at us, if st at us is
not NULL.

See Also

SDL_Creat eThread

250

SDL_KillThread

Name

SDL_Ki | | Thr ead — Gracelessly terminates the thread.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
void SDL_Kill Thread(SDL_Thread *t hread);

Description

SDL_Ki | | Thr ead gracelessly terminates the thread associated with t hr ead. If possible, you
should use some other form of IPC to signal the thread to quit.

See Also

SDL_Creat eThread, SDL_Wi t Thr ead

251

SDL_CreateMutex

Name

SDL_Cr eat eMut ex — Create a mutex
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
SDL_nut ex *SDL_Creat eMut ex(voi d);

Description

Create a new, unlocked mutex.

Examples
SDL_nut ex *nut;

mut =SDL_ Cr eat eMut ex() ;

i f(SDL_mut exP(mut)==-1){
fprintf(stderr, "Couldnt |ock mutex\n");
exit(-1);

}

/* Do stuff while nmutex is |ocked */
i f(SDL_mut exV(mut)==-1){
fprintf(stderr, "Couldn’t unlock mutex\n");

exit(-1);
}

SDL_Dest royMut ex(nut) ;

252

SDL_CreateMutex

See Also

SDL_nut exP, SDL_nut exV, SDL_Dest r oyMut ex

253

SDL_DestroyMutex

Name

SDL_Dest r oyMut ex — Destroy a mutex
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
voi d SDL_Dest r oyMut ex(SDL_nut ex *mut ex) ;

Description

Destroy a previously created mutex.

See Also

SDL_Cr eat eMut ex

254

SDL_mutexP

Name

SDL_nmut exP — Lock a mutex
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_nut exP(SDL_mut ex *nut ex);

Description

Locks the mut ex, which was previously created with SDL_Cr eat eMut ex. If the mutex is already
locked then SDL_nut exP will not return until it is unlocked. Returns 0 on success, or -1 on an error.

SDL also defines a macro #defi ne SDL_LockMut ex(m) SDL_nut exP(m) .

See Also

SDL_Cr eat eMut ex, SDL_nut exV

255

SDL_mutexV

Name

SDL_mut exV — Unlock a mutex

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_nut exV(SDL_mrut ex *nut ex);

Description

Unlocks the nut ex, which was previously created with SDL_Cr eat eMut ex. Returns 0 on success,
or -1 on an error.

SDL also defines a macro #def i ne SDL_Unl ockMut ex(m) SDL_nut exV(nj.

See Also

SDL_Cr eat eMut ex, SDL_nut exP

256

SDL_CreateSemaphore

Name

SDL_ Cr eat eSemaphor e — Creates a new semaphore and assigns an initial value to it.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
SDL_sem *SDL_Cr eat eSemaphore(Uint32 initial _val ue);

Description

SDL_Cr eat eSemaphor e() creates a new semaphore and initializes it with the value

i ni tial_val ue.Each locking operation on the semaphore by SDL_SemWait, SDL_SemTryWait
or SDL_SemWaitTimeout will atomically decrement the semaphore value. The locking operation
will be blocked if the semaphore value is not positive (greater than zero). Each unlock operation by
SDL_SemPost will atomically increment the semaphore value.

Return Value

Returns a pointer to an initialized semaphore or NULL if there was an error.

Examples

SDL_sem *ny_sem
my_sem = SDL_Creat eSenaphor e(l Nl TI AL_SEM VALUE) ;
if (my_sem== NULL) {

return CREATE_SEM FAIl LED,
}

257

SDL_CreateSemaphore

See Also

SDL_Dest r oySemaphor e, SDL_SemAai t, SDL_Senilr yWai t, SDL_SemAai t Ti neout ,
SDL_SenPost , SDL_SenVal ue

258

SDL_DestroySemaphore

Name

SDL_Dest r oySemaphor e — Destroys a semaphore that was created by SDL_CreateSemaphore.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
voi d SDL_Dest r oySemaphor e(SDL_sem *sen) ;

Description

SDL_Dest r oy Semaphor e destroys the semaphore pointed to by semthat was created by
SDL_Cr eat eSemaphor e. It is not safe to destroy a semaphore if there are threads currently blocked
waiting on it.

Examples

if (my_sem!= NULL) {
SDL_Dest r oySenaphor e(nmy_sem ;
my_sem = NULL;

See Also

SDL_Cr eat eSermaphor e, SDL_Semi t, SDL_Senilr yWai t , SDL_Sen\i t Ti meout ,
SDL_SenPost , SDL_SenVal ue

259

SDL_SemWait

Name

SDL_Semai t — Lock a semaphore and suspend the thread if the semaphore value is zero.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_SemMit(SDL_sem *sen);

Description

SDL_Semi t () suspends the calling thread until either the semaphore pointed to by semhas a
positive value, the call is interrupted by a signal or error. If the call is successful it will atomically
decrement the semaphore value.

After SDL_Sem\ai t () is successful, the semaphore can be released and its count atomically
incremented by a successful call to SDL_SemPost.

Return Value

Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).
Examples
if (SDL_SemMit(ny_se == -1) {

return WAl T_FAI LED;
}

SDL_SenPost (my_sen);

260

SDL_SemWait

See Also

SDL_Cr eat eSermaphor e, SDL_Dest r oySermaphor e, SDL_Senilr yWai t , SDL_Semi t Ti neout ,
SDL_SenPost , SDL_SenVal ue

261

SDL_SemTryWait

Name
SDL_SemTlr yWai t — Attempt to lock a semaphore but don’t suspend the thread.

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_SenilryWait (SDL_sem *senj;

Description

SDL_Senilr yWai t is a non-blocking varient of SDL_Semnai t . If the value of the semaphore pointed
to by semis positive it will atomically decrement the semaphore value and return 0, otherwise it will
return SDL_MUTEX_TIMEOUT instead of suspending the thread.

After SDL_Senilr yWai t is successful, the semaphore can be released and its count atomically
incremented by a successful call to SDL_SemPost.

Return Value

Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
thread would have suspended or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_SeniryWait(ny_sem;

if (res == SDL_MJTEX_TI MEQUT) ({
return TRY_AGAIN;

}

if (res == -1) {
return WAI T_ERRCR,

}

262

SDL_SemiTryWait

SDL_SenPost (my_sen);

See Also

SDL_Cr eat eSemaphor e, SDL_Dest r oySemaphor e, SDL_Semai t , SDL_Senm\i t Ti neout
SDL_SenPost , SDL_SenVal ue

263

SDL_SemWaitTimeout

Name

SDL_Semi t Ti meout — Lock a semaphore, but only wait up to a specified maximum time.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_SemAit Ti neout (SDL_sem *sem Ui nt32 tineout);

Description

SDL_Semi t Ti meout () is a varient of SDL_SemWait with a maximum timeout value. If the
value of the semaphore pointed to by semis positive (greater than zero) it will atomically decrement
the semaphore value and return O, otherwise it will wait up to t i neout milliseconds trying to lock
the semaphore. This function is to be avoided if possible since on some platforms it is implemented
by polling the semaphore every millisecond in a busy loop.

After SDL_Sem\ai t Ti neout () is successful, the semaphore can be released and its count
atomically incremented by a successful call to SDL_SemPost.

Return Value

Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
timeout period was exceeded or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_Semi t Ti neout (ny_sem WAI T_TI MEQUT_M LLI SEC);

if (res == SDL_MJTEX_ TI MEQUT) {
return TRY_AGAIN;

}

if (res == -1) {
return WAI T_ERRCR,

264

SDL_SemaitTimeout

SDL_SenPost (my_sen);

See Also

SDL_Cr eat eSenaphor e, SDL_Dest r oySemaphor e, SDL_SemMi t , SDL_Senilr yWi t
SDL_SenPost, SDL_SenVal ue

265

SDL_SemPost

Name
SDL_SenPost — Unlock a semaphore.

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_SenPost (SDL_sem *sen);

Description

SDL_SenPost unlocks the semaphore pointed to by semand atomically increments the semaphores
value. Threads that were blocking on the semaphore may be scheduled after this call succeeds.

SDL_SenPost should be called after a semaphore is locked by a successful call to SDL_SemWait,
SDL_SemTryWait or SDL_SemWaitTimeout.

Return Value

Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).

Examples

SDL_SenPost (my_sen;

See Also

SDL_Cr eat eSermaphor e, SDL_Dest r oySermaphor e, SDL_SemMi t, SDL_SenTr yWai t ,
SDL_SemA4i t Ti neout , SDL_SenVal ue

266

SDL_SemValue

Name

SDL_SemVal ue — Return the current value of a semaphore.
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL/ SDL_t hread. h"
Ui nt 32 SDL_SenVval ue(SDL_sem *sen) ;

Description

SDL_SenVal ue() returns the current semaphore value from the semaphore pointed to by sem

Return Value

Returns current value of the semaphore.

Examples

sem val ue = SDL_SenVal ue(ny_sem ;

See Also

SDL_Cr eat eSemaphor e, SDL_Dest r oySermaphor e, SDL_SenWai t, SDL_SemTr yWai t ,
SDL_Semi t Ti neout , SDL_SenPost

267

SDL_CreateCond

Name

SDL_ Cr eat eCond — Create a condition variable

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
SDL_cond *SDL_Cr eat eCond(voi d);

Description

Creates a condition variable.
Examples

SDL_cond *cond,;

cond=SDL_Cr eat eCond() ;

/* Do stuff */

SDL_Dest r oyCond(cond) ;

See Also

SDL_Dest r oyCond, SDL_CondWai t , SDL_CondSi gnal

268

SDL_DestroyCond

Name

SDL_Dest r oyCond — Destroy a condition variable
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
voi d SDL_Dest royCond(SDL_cond *cond);

Description

Destroys a condition variable.

See Also

SDL_Cr eat eCond

269

SDL_CondSignal

Name

SDL_CondSi gnal — Restart a thread wait on a condition variable
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_CondSi gnal (SDL_cond *cond);

Description

Restart one of the threads that are waiting on the condition variable, cond. Returns 0 on success of
-1 onan error.

See Also

SDL_CondWai t, SDL_CondBr oadcast

270

SDL_CondBroadcast

Name

SDL_CondBr oadcast — Restart all threads waiting on a condition variable
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
i nt SDL_CondBroadcast (SDL_cond *cond);

Description

Restarts all threads that are waiting on the condition variable, cond. Returns 0 on success, or -1 on
an error.

See Also

SDL_CondSi gnal , SDL_CondWai t

271

SDL_CondWait

Name
SDL_CondWai t — Wait on a condition variable

Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_CondWit(SDL_cond *cond, SDL_nutex *mut);

Description

Wait on the condition variable cond and unlock the provided mutex. The mutex must the locked
before entering this function. Returns O when it is signalled, or -1 on an error.

See Also

SDL_CondWai t Ti meout , SDL_CondSi gnal , SDL_nut exP

272

SDL_CondWaitTimeout

Name

SDL_CondWai t Ti meout — Wait on a condition variable, with timeout
Synopsis

#i ncl ude "SDL. h"
#i ncl ude "SDL_t hread. h"
int SDL_CondWai t Ti meout (SDL_cond *cond, SDL_nutex *nutex, Ui nt32 ns);

Description

Wait on the condition variable cond for, at most, ms milliseconds. mut is unlocked so it must be
locked when the function is called. Returns SDL_MJUTEX_TI MEDOUT if the condition is not signalled
in the allotted time, O if it was signalled or -1 on an error.

See Also

SDL_CondWai t

273

Chapter 13. Time

SDL provides several cross-platform functions for dealing with time. It provides a way to get the
current time, a way to wait a little while, and a simple timer mechanism. These functions give you
two ways of moving an object every x milliseconds:

« Use a timer callback function. This may have the bad effect that it runs in a seperate thread or uses
alarm signals, but it’s easier to implement.

« Or you can get the number of milliseconds passed, and move the object if, for example, 30 ms
passed.

SDL_GetTicks

Name

SDL_Get Ti cks — Get the number of milliseconds since the SDL library initialization.

Synopsis
#i ncl ude "SDL. h"

Ui nt32 SDL_Get Ti cks(void);

Description

Get the number of milliseconds since the SDL library initialization. Note that this value wraps if the
program runs for more than ~49 days.

See Also

SDL_Del ay

274

SDL_Delay

Name

SDL_Del ay — Wait a specified number of milliseconds before returning.
Synopsis

#i ncl ude "SDL. h"
voi d SDL_Del ay(Ui nt 32 ns);

Description

Wait a specified number of milliseconds before returning. SDL_Del ay will wait at least the specified
time, but possible longer due to OS scheduling.

Note: Count on a delay granularity of at least 10 ms. Some platforms have shorter clock ticks
but this is the most common.

See Also

SDL_AddTi ner

275

SDL_AddTimer

Name

SDL_AddTi mer — Add a timer which will call a callback after the specified number of
milliseconds has elapsed.

Synopsis

#i ncl ude "SDL. h"
SDL_Ti ner| D SDL_AddTi ner (Ui nt 32 interval, SDL_NewTi mer Cal | back cal | back,
voi d *param;

Callback

/* type definition for the "new' timer callback function */
typedef Uint32 (*SDL_NewTi ner Cal | back) (Uint32 interval, void *param;

Description

Adds a callback function to be run after the specified number of milliseconds has elapsed. The
callback function is passed the current timer interval and the user supplied parameter from the
SDL_AddTi mer call and returns the next timer interval. If the returned value from the callback is the
same as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer call SDL_RemoveTimer with the timer ID returned from
SDL_AddTi ner.

The timer callback function may run in a different thread than your main program, and so shouldn’t
call any functions from within itself. You may always call SDL_PushEvent, however.

The granularity of the timer is platform-dependent, but you should count on it being at least 10 ms as
this is the most common number. This means that if you request a 16 ms timer, your callback will
run approximately 20 ms later on an unloaded system. If you wanted to set a flag signaling a frame
update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see example below).
If you use this function, you need to pass SDL_I NI T_TI MERto SDL_Init.

276

SDL_AddTimer

Return Value

Returns an ID value for the added timer or NULL if there was an error.

Examples

ny_timer_id = SDL_AddTi ner ((33/10)*10, mny_call backfunc, my_call back_param;

See Also

SDL_RenoveTi mer, SDL_PushEvent

277

SDL_RemoveTimer

Name

SDL_RenoveTi mer — Remove a timer which was added with SDL_AddTimer.
Synopsis

#i ncl ude "SDL. h"
SDL_bool SDL_RenoveTiner(SDL_TinerIDid);

Description

Removes a timer callback previously added with SDL_AddTimer.

Return Value

Returns a boolean value indicating success.

Examples

SDL_RenoveTi mer (nmy_tiner_id);

See Also

SDL_AddTi ner

278

SDL_SetTimer

Name

SDL_Set Ti mer — Set a callback to run after the specified number of milliseconds has elapsed.
Synopsis

#i ncl ude "SDL. h"
int SDL_SetTiner(U nt32 interval, SDL_TimerCallback call back);

Callback

/* Function prototype for the timer callback function */ typedef Uint32
(*SDL_TimerCallback)(Uint32 interval);

Description

Set a callback to run after the specified number of milliseconds has elapsed. The callback function is
passed the current timer interval and returns the next timer interval. If the returned value is the same
as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer, call SDL_Set Ti mer (0, NULL);

The timer callback function may run in a different thread than your main constant, and so shouldn’t
call any functions from within itself.

The maximum resolution of this timer is 10 ms, which means that if you request a 16 ms timer, your
callback will run approximately 20 ms later on an unloaded system. If you wanted to set a flag
signaling a frame update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see
example below).

If you use this function, you need to pass SDL_I NI T_TI MERto SDL_I ni t ().

Note: This function is kept for compatibility but has been superseded by the new timer functions
SDL_AddTimer and SDL_RemoveTimer which support multiple timers.

279

DL_SetTimer

Examples

SDL_Set Ti mer ((33/10)*10, ny_cal | back);

See Also

SDL_AddTi ner

280

