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Abstract.  The high x-ray flux available at synchrotron radiation sources can cause nonlinearities in photon-counting 
detectors unless deadtime corrections are employed.  We compute the uncertainties associated with several common 
deadtime-correction formulas.  At lower countrates, statistical noise dominates the error in the measured countrates; at 
higher countrates, the dominating factors are saturation of the response and uncertainty in the value of the deadtime 
parameter.  In between, a range of countrates exists in which the signal-to-noise ratio can be optimized for photon-
counting experiments. 
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INTRODUCTION 

Deadtime corrections are used to correct nonlinearities in the output of photon-counting detectors; these 
nonlinearities appear when photons arrive too fast for all to be counted.  The appropriate formula can extend the 
dynamic range of a detector beyond its linear regime, which is much more efficient than attenuating the beam to 
limit a detector to its linear-response range.  In this paper we review several common deadtime formulas and derive 
the associated signal-to-noise ratios.  For any measurement not limited by photon flux, these results can be used to 
obtain the optimal countrate for a given detector. 

DEADTIME MODELS 

Numerous deadtime-correction formulas have been derived for a variety of photon detector applications [1–7].  
Such formulas have been derived for many cases, including whether the detector exhibits nonextended or extended 
behavior; whether the time structure of the x-ray beam is continuous, as a tube source, or pulsed, as a synchrotron; 
and whether the detector discriminates the number of simultaneously arriving photons (i.e., whether it performs 
pulse-height analysis).  This paper analyzes three common deadtime corrections.  The first, and perhaps simplest, is 
the nonextended deadtime model, which is applicable for a detector that is “dead” for a time  after a given photon is 
counted.  The true countrate NT is obtained from the observed countrate NO via the expression 
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The effective deadtime constant , as applied in the formulas of this paper, usually depends on a combination of 
intrinsic and extrinsic factors, that is, the response time of the detector and the time structure of the source, 
respectively. 

However, most detectors are “dead” for a time  after each photon arrives [3,5].  That is, after a photon is 
counted, the arrival of additional photons within  extend the length of time that the detector is dead.  This model is 
thus known as the extended or paralyzable deadtime model.  For a detector that uses pulse-height analysis to 
discriminate against multiple-photon events, the appropriate formula is  

856

Downloaded 20 May 2011 to 164.54.53.173. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



 
 

FIGURE 1.  Comparison of observed and true countrates for the nonextended (solid line), extended (dashed line), and isolated 
(dash-dot line) deadtime models.  In this example, the deadtime parameter  = 100 ns. 
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Solutions of Eq. 2 for NT are discussed in Refs. [7,8].  This correction is typically appropriate for a scintillator 
detector using a single-channel analyzer to prevent harmonic contamination. 

A third deadtime model is applicable to a fast detector, i.e., one whose recovery time is shorter than the pulse 
separation, allowing the pulses to be isolated. If pulse-height analysis is used, then Eq. 2 still applies.  But without 
pulse-height analysis, any number of simultaneously arriving photons will be observed as a single count.  This 
isolated deadtime model thus yields 
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In this case  is simply the time between pulses from the source.  This model is often applicable to an avalanche 
photodiode in photon-counting mode at a synchrotron source whose fill pattern has modest gaps between bunches.  

 
A comparison of these three deadtime models is shown in Fig. 1.  A value of  = 100 ns is used to calculate these 

curves.  Note that the maximum observed countrate NO for the nonextended and isolated deadtime models is 1/.  In 
contrast, there is a maximum value of NO for the extended deadtime model of (e)−1 at NT = 1/; as the true 
countrate is increased above 1/, the deadtime becomes so extended that the apparent countrate decreases, and the 
resulting data are not usable. 

RELATIVE ERRORS OF DEADTIME MODELS 

Two sources of uncertainty can be associated with the values of NT derived from Eqs. 1, 2, or 3: the statistical 
error from the measurement of NO and uncertainty in the exact value of .  Here we use X to represent the 
uncertainty associated with parameter X, so the two experimental uncertainties are 

ON  and , respectively.  

TN  must be obtained to determine the trustworthiness of the true countrate NT.  In this section we derive the 

relative error of the true countrate, TTN N/ , by error propagation in quadrature for NT (Eqs. 1-3) with respect to 

NO and  (see, e.g., [9]).  If IO is the observed intensity, measured as the number of photons counted in time t, then 

Poisson statistics give the error of the intensity as the square root of the number of counts, or 
OI  = OI .  The 

observed countrate NO is, by definition, IO/t, so its corresponding error is  
 

 
t

N
I

t
O

OON 
1

. (4) 

857

Downloaded 20 May 2011 to 164.54.53.173. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Eq. 4 is not strictly correct as the true counts, rather than the observed counts, should follow a Poisson distribution 
[1].  At low countrates, before deadtime corrections become significant, there is little difference between the 
observed and true countrates; Eq. 4 is safely valid in this regime.  At higher countrates (beyond several percent of 
1/), this approximation will overestimate the true relative error. However, as shown below, other sources of error 
dominate at higher countrates; the associated overestimation does not, then, affect the conclusions of our work.  Via 
error propagation, the resulting relative error for the nonextended model (Eq. 1) is 
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The first factor on the left side of this equation is large at low countrates; the second is large at high countrates.  In 
the final factor of this equation, the first term is due to counting error, and the second is due to uncertainty in . 

The relative error for the extended model (Eq. 2) is quite similar to Eq. 5:  
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At a synchrotron source, the repetition rate of the x-ray bunches should be known, so there should be no uncertainty 
in  associated with the isolated deadtime model (Eq. 3).  Therefore, with  = 0, the relative error for this model is 
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In Fig. 2 we plot the relative error of the three models.  As with Fig. 1, we use  = 100 ns; the count time t = 0.01 

s.  We present the relative error against NO rather than NT, as the observed countrate is the immediately accessible 
quantity.  Three lines are plotted assuming  is known exactly; also shown is the nonextended model with /= 1%. 

DISCUSSION 

The relative importances of the various sources of error are clearly illustrated in Fig. 2, with several qualitative 
similarities between the models.  At low countrates, precision is limited by statistical error.  The relative error will 
improve with more counts, either by having a higher counting rate or by counting for longer times.  In this regime, 
the relative error decreases as t1/2 (Eqs. 5-7).  At high countrates, large changes in NT produce only small changes in 
NO, as reflected by the flattening of the curves for the deadtime models in Fig. 1; the detector loses its sensitivity to 
observe small changes in the true count rate.  Between the extremes, these graphs have wide minima, over which is 

 
 

 
 

FIGURE 2.  Relative error in the true countrate for the nonextended (solid line), extended (dashed line), and isolated (dash-dot 
line) deadtime models, with  = 0.  The dotted line is the calculation for the nonextended model including an uncertainty in the 
deadtime parameter of / = 1%.  In this example, the deadtime parameter  = 100 ns, and the count time t = 0.01 s. 
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the most favorable range of countrates. 
Uncertainty in the value of the deadtime parameter  will increase errors in NT.  As demonstrated by the dotted 

line in Fig. 2, the effects of  are more prevalent at higher countrates and will reduce the optimal countrate NO.  
Uncertainties in  can be minimized by avoiding the high-countrate regime but cannot be eliminated; as can be seen 
in Eqs. 5 and 6, increasing the count time t will not reduce the effect of this source of uncertainty. 

The above calculations used a value of  = 100 ns for Fig. 2, which allowed relative errors as low as 1% for fairly 
short counting times.  But if  is longer, the relative error suffers accordingly.  For example, in gated pump-probe 
experiments, 1/ for the isolated model is the repetition rate of the pump.  This rate might be only on the order of a 
kHz.  The best relative error for 1-s count times at  = 1 ms is 7%.  Longer count times become essential for 
improved errors. 

The results we have described can be used to optimize more complicated photon-counting measurements.  As an 
example, we present the case of determining the ratio R of two countrates A and B.  This could be for a pump-probe 
experiment when the pump is on vs. off, or a polarization-flipping experiment when the polarization is up vs. down.  
The desired value is RT = AT/BT with uncertainty 

TR .  The observed quantities are AO and BO with uncertainties 

OA  and 
OB , respectively.  For simplicity, we neglect any uncertainty in  and assume  is equal for both signals 

(in many cases, AO and BO are measured with the same detector).  The relative error of the true ratio is 
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As a simple example, we consider the nonextended deadtime model.  The true ratio RT in terms of the observed 

countrates is 
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. Applying Eq. 1 to Eq. 8, the relative error of the ratio becomes 
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In a relatively low-countrate regime, the relative error will be dominated by the smaller of the two countrates, while 
in a higher countrate regime, it will be dominated by the greater of the two.  If the ratio is near unity (AO ~ BO), then 
an optimal countrate can be obtained as was calculated in Fig. 2.  These results can be generalized to other deadtime 
models or to other relative quantities, such as the difference A−B or the asymmetry ratio (A−B)/(A+B). 
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